
- 1. _____ means "Standard Temperature and Pressure." (273 Kelvin & 1 atm)
- 2. _____ are pure substances composed of only one kind of atom.
- 3. _____ model of the atom was a solid sphere of matter that was uniform throughout.
- 4. _____ discovered the electron and developed the "plum-pudding" model of the atom.

Positive & negative particles spread throughout entire atom.

- 5. The current, ______ model of the atom has electrons in "clouds" (orbitals) around the nucleus.
- 6. The ______is equal to an atom's number of protons and neutrons added together.
- 7. The ______ is equal to the number of protons in the nucleus of an atom.
- 8. _____are small and are negatively charged (-).
- 9. Electrons are found in "clouds" or ______ around an atom's nucleus.
- 10._____ **compounds** are substances made up of only two kinds of atoms. (examples: H₂O, NH₃, CO₃)
- 11._____ **molecules** are elements that form two atom molecules in their natural form at STP. Remember the phrase "HOFBrINCI" (H₂, O₂, F₂, Br₂, I₂, N₂, Cl₂) THE 7H Club!

12.USE THE REFERENCE TABLE !!!

13._____have no charge.

- 14._____are positively charged (+).
- 15._____are small and are negatively charged (-).
- 16.Protons & neutrons are in an atom's nucleus and are called
- 17.The _____ of ____ = mass number atomic number.
- 18._____ are atoms with equal numbers of protons, but differ in their neutron numbers.
- 19._____ are positive (+) ions and form when a neutral atom loses electrons. They are smaller than their parent atom.
- 20._____ are negative ions and form when a neutral atom gains electrons. They are larger than their parent atom.
- 21. _____ gold foil experiment showed that an atom is mostly empty space with a small, dense, positively-charged nucleus.
- 22.Electrons emit energy as light when they jump from higher energy levels back down to lower (_______ energy levels. ______ spectra are produced.
- 23.If the decimal point is present, start counting digits from the Pacific (left) side, starting with the first non-zero digit.
- 24._____are the best examples of ______mixtures. (Air, salt water, etc.)
- 25._____ **mixtures** have discernable components and are not uniform throughout. (Chocolate-chip cookies, vegetable soup, soil, muddy water, etc.)
- 26.A ______is the substance being dissolved, while the ______is the substance that dissolves the solute. (Water is the solvent in Kool-Aid, while sugar is the solute.)
- 27.Isotopes are written in a number of ways: C-14 is also Carbon-14, and is also

1

28. The distribution of electrons in an atom is its electron

29. Electron configurations are written in the bottom center of an element's box on the periodic table in your reference tables.

> 24.305 Mg 12 2-8-2 # of electrons in 3rd principal energy level # of electrons in 2nd principal energy level # of electrons in 1st principal energy level

30.USE THE REFERENCE TABLE!!!

31. Polyatomic ions (Table E) are groups of atoms with an overall charge.

NO₃¹⁻, NH₄¹⁺, SO₄²⁻, etc.

- 32. are written in front of the formulas of reactants and products in chemical equations. They give us the ratios of reactants and products in a balanced chemical equation.
- 33. Chemical formulas are written so that the charges of cations and anions neutralize one another. "Criss-Cross"

Example: calcium phosphate:

$$Ca^{2+} PO_4^{3-} = Ca_3(PO_4)_2$$

34. When naming binary ionic compounds, write the name of the positive ion (cation) first, followed by the name of the negative ion (anion) with the name ending in "-ide."

Example:

MgS

Potassium chloride Magnesium sulfide

35. When naming compounds containing polyatomic ions, keep the name of the polyatomic ion the same as it is written in Reference Table E.

KCI

Example:

	NH4Cl Ammonium chloride	NH4NO3 Ammonium nitrate			
	ange the appearance of	orm new substances. They the original material. (The			
	changes result in s. (The burning of hydro	the formation of new gen gas to produce water			
	are on the left side of the reaction arrow dare on the right.				
		heat. The energy value is action arrow in a forward			
	reactions releas the reaction.	se energy and the energy is a			
41.Only chemical e	can be ch quations!	anged when balancing			
	form a single product.	when two or more reactants			
Examp	ble: $2H_2(g) + O_2(g)$	$\rightarrow 2H_2O(g)$			

43. _____ reactions occur when a single reactant forms two or more products.

Example: $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

44._____ **reactions** occur when one element replaces another element in a compound.

Example: Mg + 2HCl \rightarrow MgCl₂ + H₂

45._____ **reactions** occur when two compounds react to form two new compounds.

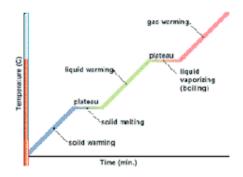
Example: AgNO₃ + KCI \rightarrow AgCl + KNO₃

- 46.The masses of the reactants in a chemical equation is always equal to the masses of the products. "Law of Conservation of "
- 47. The gram formula mass of a substance is the sum of the atomic masses of all of the atoms in it.

 $H_2SO_4 = 98 \text{ g/mole}$

 $2 \times H = 2 \times 1 \text{ g/mole} = 2 \text{ g/mole}$

- 1 x S = 1 x 32 g/mole = 32 g/mole
- 4 x O = 4 x 16 g/mole = 64 g/mole


sum = 98 g/mole

48.Know how to calculate the percentage composition of a compound. (Formula is on Table ____.)

49.USE THE REFERENCE TABLE!!

- 50. The particles in a _____are rigidly held together.
- 51. _____ have a definite shape and volume.
- 52._____ have closely-spaced particles that easily slide past one another.
- 53._____ have no definite shape, but have a definite volume.

- 54._____ have widely-spaced particles that are in random motion.
- 55._____ are easily compressed and have no definite shape or volume.
- 56.Be able to read and interpret heating/cooling curves as pictured below.

- 57.Substances that ______ turn from a solid directly into a gas. (CO2 & I2)
- 58. Degrees Kelvin = °C + _____
- 59.Use this formula to calculate heat absorbed/released by substances.

60.q = mc∆t

- q = heat absorbed or released (Joules)
- m = mass of substance in grams
- c = specific heat capacity of substance $(J/g^{\bullet \circ}C)$...

for water it's 4.18

- Δt = temperature change in degrees Celsius
- 61. The heat absorbed or released when 1 gram of a substance changes between the solid and liquid phases is the substance's **heat of** _____. (334 J/g for water)

62. The heat absorbed or released when 1 gram of a substance changes between the liquid and gaseous phases is the substance's **heat of** _____. (2260 J/g for water)

63.As the ______ on a gas increases, ______ decreases proportionally._____

64. As the _____ on a gas increases, _____ increases.

65.As the ______ of a gas increases, ______ increases.

66.Always use Kelvins for temperature when using the **combined** _____ **law**.

$$P_1V_1 = P_2V_2$$
$$T_1 \qquad T_2$$

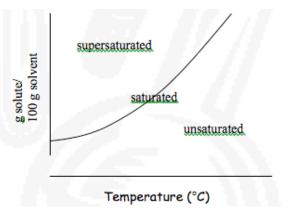
- 67._____ gas particles have volume and are attracted to one another, and thus do not always behave like _____ gases.
- 68.Real gases behave more like ideal gases at *low pressures* and *high temperatures*.
- 69. ______separates mixtures with different boiling points.
- 70. ______separates mixtures of solids and liquids.
- 71._____can also be used to separate mixtures of liquids and mixtures of gases.
- 72.**The** ______ **Law** states that the properties of elements are periodic functions of their atomic numbers.
- 73. _____are horizontal rows on the Periodic Table.
- 74._____ are vertical columns on the Periodic Table.
- 75._____are found left of the "staircase" on the Periodic
- Table, _____ are above it, and _____border it.

76.Memorize this chart.

Metal	malleable	ductile	lustrous	good conductors of heat and electricity	low ionization energy and electroneg.	tend to form + ions
Nonmetal	Brittle when solid	Mostly gases at STP	dull	good insulators	High IE and electroneg.	tend to form - ions

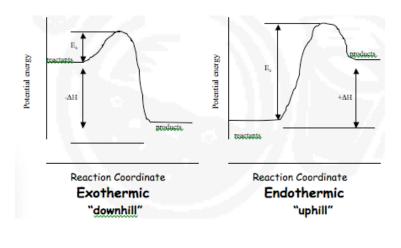
- 77._____ (Group 18) are inert and stable due to the fact that their valence level of electrons is completely filled.
- 78._____energy increases as you go up and to the right on the Periodic Table.
- 79. _____ decrease left to right across a period due to increasing nuclear charge.
- 80. _____ radii increase as you go down a group.
- 81._____ is a measure of an element's attraction for electrons.
- 82.Electronegativity _____ as you go up and to the right on the Periodic Table.
- 83. The elements in Group 1 are the ______.
- 84. The elements in Group 2 are the ______

85.The elements in Group 17 are the _____.


- 86.The elements in Group 18 are the ______.
- 87.Use **Table** _____ to compare and look up the properties of specific elements.
- 88.Energy is **released** when a chemical bond _____. The more energy that is released, the more stable the bond is.

- 89. The last digit of an element's group number is equal to its **number of** ______.
- 90.Draw one dot for each valence electron when drawing an element's or ion's _____ diagram.
- 91. The **kernel** of an atom includes everything in an atom except the atom's valence electrons.
- 92.Metallic bonds can be thought of as a crystalline lattice of kernels surrounded by a "sea" of mobile valence electrons.
- 93.Atoms are most stable when they have 8 valence electrons (an _____) and tend to form ions to obtain such a configuration of electrons.
- 94._____ **bonds** form when two atoms **share** a pair of electrons.
- 95._____ **bonds** form when one atom **transfers** an electron to another atom when forming a bond with it.
- 96._____ **covalent bonds** form when two atoms of the same element bond together or when the electronegativity difference between two atoms is zero.
- 97._____covalent bonds form when the electronegativity difference between two bonding atoms is between 0.5 and 1.6.
- 98._____ **bonds** form when the electronegativity difference between two bonding atoms is 1.7 or more.
- 99.Substances containing mostly covalent bonds are called ______substances.
- 100.Substances containing mostly ionic bonds are called **compounds.**

101.Memorize this table.


Substance Type	Properties		
	Hard, high melting and boiling points, conduct electricity when molten or aqueous		
(molecular)	soft, low melting and boiling points, Do not conduct electricity (insulators)		

- 102. _____ **bonds** form when hydrogen bonds to the elements N, O, or F and gives the compound unusually high melting and boiling points.
- 103.Use **Table** ______ to predict the solubility of compounds.
- 104.Remember substances tend to be soluble in solvents with similar properties.... "Like dissolves _____"
- 105.As temperature increases, solubility ______ for most solids.
- 106. At low temperatures and high pressures solubility ______for most gases.
- 107.Use Table _____to determine whether a solution is **saturated**, **unsaturated**, or **supersaturated**.

- 108._____ is a way to measure the *concentration* of a solution. Molarity is equal to the number of moles of solute divided by the number of liters of solution. The formula is on the back of the reference tables.
- 109.____ **by** ____ = mass of the part / mass of the whole x 100%
- 110._____ per _____ (ppm) = grams of solute / grams of solution x 1,000,000
- 111.Solutes ______ the boiling points and ______ the melting points of solvents.
- 112.Liquids ______when their vapor pressure is equal to the atmospheric pressure.
- 113.The **normal boiling point** of a substance is the temperature at which it boils at 1 atm (101.3kPa) of pressure. (Take note of Table H)
- 114.Covalently bonded substances tend to react more slowly than ionic compounds.
- 115.Increasing the concentration of reactants will ______reaction rate.
- 116.Increasing the surface areas of the reactants will ______ reaction rate.
- 117.Increasing the pressure on gases ______ reaction rate.
- 118._____ speed up reactions by lowering their **activation energies**. They are not changed themselves and can be reused many times over.
- 119.Increasing temperature _____reaction rate.

120.Be able to recognize and read **potential energy diagrams**.

- 121.ΔH is (+) for _____ reactions and is (-) for _____reactions.
- 122.The rates of the forward and reverse reactions are equal at equilibrium.
- 123._____any reactant or product to a system at equilibrium will shift the equilibrium away from the added substance.
- 124._____any reactant or product from a system at equilibrium will shift the equilibrium point toward that removed substance.
- 125.An _____ in temperature shifts an equilibrium system in the endothermic direction. (Move away from the heat)
- 126.A _____ in temperature shifts an equilibrium system in the exothermic direction. (Move toward the heat)
- 127._____ the pressure on a gaseous equilibrium will shift the equilibrium point toward the side with **fewer moles of gas.** (Because the volume was decreased)

- 128. _____the pressure on a gaseous equilibrium will shift the equilibrium point toward the side with **more moles of** gas.
- 129.**Catalysts** have _____ effect on an equilibrium. It just establishes itself quicker.
- 130._____ (Δ H) is the heat energy gained or lost in a reaction.
- 131._____ is high in a highly unorganized system, such as a gas, a messy room, etc.
- **132.USE THE REFERENCE TABLES**
- 133.**Oxidation** is the ______ of electrons by an atom or ion. The oxidation number ______ as a result. The electrons are on the right side of the reaction arrow.

$$Zn \rightarrow Zn^{2+} + 2e^{-1}$$

134. **Reduction** is the ______ **of electrons** by an atom or ion. The oxidation number ______(is reduced!) as a result. The electrons are on the left side of the reaction arrow.

 $CI + e^- \rightarrow CI^-$

135.Redox reactions always involve the exchange of

136.Remember.... "LEO the lion says GER!"

Lose Gain

Electrons Electrons

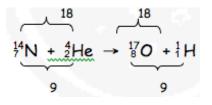
Oxidation Reduction

- 137.**Identify** redox reactions by seeking an uncombined element on one side of a reaction that is in a compound on the other side.
 - $Zn + 2HCI \rightarrow ZnCl_2 + H_2$

Uncombined Zn is combined with Cl

- 138. Oxidizing agents are what get reduced in a redox reaction. Reducing agents are what get oxidized in a redox reaction.
- 139.____cells produce electricity with a spontaneous redox reaction.

140.Memorize this saying... "I have AN OX and a RED CAT."


- 141.In electrochemical cells, the **AN**ode gets **OX**idized and **RED**uction occurs at the **CAT**hode.
- 142._____ **cells** use a battery to force a nonspontaneous reaction.
- 143. Electrolytic cells are usually used for metal plating of objects.
- 144.Acids and bases are both good ______. Their solutions conduct electricity well.
- 145.Weak acids taste _____.
- 146.Weak bases taste _____.
- 147. Acids and bases turn ______different colors. They're listed on Table _____.
- 148._____ have a pH < 7.
- 149._____ have a pH > 7.
- 150.**Tables** _____ & ____ list names and formulas of common acids and bases asked about on the Regents.
- 151. The metals above H_2 on **Table** ____ will react with acids to make H_2 gas bubbles.
- 152. Arrhenius says:
 - give off H^+ or H_3O^+ ions in solution."
 - _____ give off OH⁻ ions in solution."
- 153.Acids and bases react in **neutralization** reactions to make ______ and a _____.

- 154._____are controlled neutralization reactions used to find the concentration of an acid or base sample. Note the formula for it on Table T.
- 155.ALL organic compounds contain the element ______.
- 156. Carbon ALWAYS makes _____ bonds in molecules.
- 157._____hydrocarbons have all single bonds within them (alkanes).
- 158._____hydrocarbons have double or triple bonds in them (alkenes & alkynes).
- 159._____ contain ONLY the elements hydrogen and carbon.
- 160. The **homologous series** of hydrocarbons' formulas are on **Reference Table** ____.
- 161. The **functional groups** on organic molecules are listed on **Reference Table** ____.
- 162._____ of organic compounds have different structural formulas but the same molecular formula.
- 163.Number the parent carbon chain in an organic molecule from the end closest to the alkyl group(s).
- 164._____ **reactions** occur when a hydrocarbon reacts with oxygen to make CO₂ and H₂O.
- 165.**Organic** ______ reactions occur when an alkane and a halogen (Group 17) reacts so that one or more hydrogen atoms on the alkane are replaced with oxygen.
- 166.**Organic** _____ **reactions** occur when an alkene or alkyne combine with a halogen to make one product (halide).
- 167._____occurs when an organic acid and an alcohol react to make water and an _____.

- 168._____ occurs when an ester reacts with a base to make alcohol and a _____.
- 169._____ reactions occur when yeast catalyze a sugar ($C_6H_{12}O_6$) to make carbon dioxide and ethanol.
- 170._____are long chains of repeating units called **monomers**.
- 171.Polymers form by polymerization reactions.
- 172._____ **polymerization** occurs when unsaturated monomers join in a long polymer chain.

 $nC_2H_2 \rightarrow (C_2H_2)n$

- 173.USE YOUR REFERENCE TABLES!!!
- 174._____ **polymerization** occurs when monomers join to form a polymer by removing water. Water is a product!
- 175. Natural polymers include starch, cellulose, and proteins.
- 176. **Synthetic polymers** include plastics such as nylon, rayon, and polyester.
- 177. Unstable atoms that are radioactive are called ______. (Table N)
- 178. Radioisotopes can decay by giving off any of the particles/ emanations listed in **Table** _____.
- 179. _____particles (see Table O) are positively charged (+).
- 180._____ **particles** (see Table O) are negatively charged (-).
- 181. The sum of the mass numbers and atomic numbers must be equal on both sides of the reaction arrow for nuclear equations.

182._____ reactions split heavy nuclei into smaller ones.

 ${}^{1}_{0}n + {}^{235}_{56}U \rightarrow {}^{139}_{56}Ba + {}^{94}_{36}Kr + {}^{31}_{0}n + Energy$

183. _____ reactions occur when light nuclei combine to form a heavy nucleus and a lot of energy.

```
^{2}_{1}H + ^{2}_{2}H \rightarrow ^{4}_{2}He + ENERGY
```

- 184.The ______life of a radioisotope is the length of time it takes for one half of the atoms in a sample to radioactively decay. (Table N)
- 185. C-14 is used to determine the ages of organic material up to 23,000 years old.
- 186. U-238 is used to determine the ages of rocks.
- 187. I-131 is used to treat thyroid disorders.
- 188. Co-60 is used to treat cancer tumors.
- 189. Radiation can be used to kill bacteria on foods to slow the spoilage process.
- 190. Disposal of radioactive waste is a problem associated with nuclear reactors.
- 191. USE THE REFERENCE TABLES!!!
- 192. Be sure to answer every question. If you don't know the answer, take a guess.
- 193. Some chance of getting it right is better than none at all.
- 194. You have three hours to take the test, so take your time.

- 195.Try substituting words that seem confusing with a different word. Sometimes this makes the question make more sense. (ex.: substitute the word "false" for "not true")
- 196.Consider on every question if the answer is in the reference tables or if the reference tables could help you.
- 197. Your first choice is usually your best one. Only change an answer if you find an obvious mistake when checking your work.
- 198.Even if you think you know a formula, look it up. Most are on last page.
- 199.Skip a question if it is giving you a hard time. Go back to it later. Something else in the test may help you answer the harder problem.
- 200.Eat a healthy meal the night before and for breakfast as well.
- 201.Get a good night's sleep. A tired mind is not as sharp and clear as a well-rested one.

202. Relax – you've seen all this stuff before!