Energetics

Practice Problems

- 1. The Enthalpy of formation (ΔH^0) of the following compounds are given on Table 12 in your data booklet. Give the thermochemical equations which represent the ΔH^0 of them.
 - a) Bromoethane
 - b) Phenol
 - c) Methylamine
- 2. Calculate the standard heat of formation for the following reactions:
 - a) $C_6H_5CH_{3(g)} + 9O_{2(g)} \rightarrow 7CO_{2(g)} + 4H_2O_{(g)}$
 - b) $2C_2H_{6(g)} + 7O_{2(g)} \rightarrow 4CO_{2(g)} + 6H_2O_{(g)}$

Additional data (ΔH^{0}_{f}):

- CO_{2(g)} = -394 kJ mol⁻¹
- H₂O_(g) = -242 kJ mol⁻¹
- 3. Born-Haber Cycle
 - a) Write an equation to represent the lattice energy of cadmium fluoride, CdF₂.
 - b) Write an equation to represent the second ionization energy of cadmium.
 - c) Use the following data, and further information from sections 8 and 11 of the IB data booklet to construct a Born-Haber cycle for cadmium fluoride.
 - d) Calculate the lattice energy of cadmium fluoride.

Additional data:

- enthalpy change of atomization for $Cd(s) = +102 \text{ kJ mol}^{-1}$
- second ionization energy of cadmium = $+1631 \text{ kJ mol}^{-1}$
- Enthalpy change of formation of $CdF_2(s) = -694 \text{ kJ mol}^{-1}$