\qquad
\qquad

Unit 3 - Bonding, Moles, \& Stoichiometry
IB Chemistry 11

In-Class Practice Problems

Determining Empirical Formula
A compound formed in the lab is 47% Lithium and 53% Oxygen. What is its empirical formula?
$\begin{array}{ll}\text { (1) } \begin{array}{ll}47 \mathrm{~g} \mathrm{Li} \\ 53 \mathrm{~g} 0\end{array} & \frac{1 \mathrm{~mol} \mathrm{~L}}{6.941 \mathrm{~g}} \\ & \frac{1 \text { mol } 1 \mathrm{~g}}{16 \mathrm{~g}} \\ \\ \text { Determining Molecular Formula }\end{array}$
A compound composted of 75% carbon and 25% hydrogen has a molecular mass of 32

$$
\begin{aligned}
& \text { amu. Determine its molecular formula. } \\
& 75 g, 25 g \\
& \frac{1 \mathrm{molc}}{12.01 \mathrm{~g}} \times \frac{75 \mathrm{~s}}{1}=6.25 \mathrm{molC} \\
& \begin{array}{l}
\frac{6.25}{6.25}=1 \quad \frac{25}{6.25}=4 \quad \text { EfF. }=\begin{array}{l}
\mathrm{CH}_{4} \\
(16)
\end{array} \\
32 \rightarrow
\end{array} \\
& \frac{1 \mathrm{moH}}{1.01 \mathrm{~g}} \times \frac{25 \mathrm{~s}}{1}=25 \mathrm{molH} \\
& \text { Gram to Gram Conversions } \\
& \text { MuHtiplie is } 2 \Rightarrow C_{2} H_{8} \\
& 2 \mathrm{CH}_{4}=2 \text { methane modectis }
\end{aligned}
$$

$$
\begin{gathered}
\frac{6.77}{3.31}=2.01 \frac{3.31}{3.31}=1 \\
L_{i 2} 0
\end{gathered}
$$

6.77 mol Li
\qquad
mol 0
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
mole : mole ratios
How many grams of sodium sulfate will be produced if you start with 200 grams of sodium hydroxide and you have an excess of sulfuric acid?
\qquad

$$
\mathrm{Pb}\left(\mathrm{SO}_{4}\right)_{2}+4 \mathrm{LiNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{4}+2 \mathrm{Li}_{2} \mathrm{SO}_{4}
$$

How many grams of lithium nitrate will be needed to make 250 grams of lithium sulfate, assuming that you have an adequate amount of lead (IV) sulfate to do the reaction?

Molar Volume Calculations (Gases Only)

(1 mole $=22.4$ Liters)
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
How many liters of hydrogen will be needed to make 350 liters of water vapor?

How many milliliters of oxygen will be needed to make the same amount of water vapor?

\qquad
\qquad

$$
2 \mathrm{Cu}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CuO}_{(\mathrm{s})}
$$

How many grams of Copper (II) oxide will be formed from 10 liters of oxygen gas?

$$
\frac{80 \mathrm{~g} \mathrm{CuO}}{l_{\text {mot } \mathrm{CuD}}} \times \frac{2 \text { mol } \mathrm{KuO}}{1 \text { mot } \mathrm{O}_{2}} \times \frac{1 \operatorname{montO}_{2}}{22.4\left\llcorner\mathrm{O}_{2}\right.} \times \frac{10 \mathrm{~L} \mathrm{\sigma}_{2}}{1}=71.4 \mathrm{LO}_{2}
$$

Particle Calculations - Avogadro
(1 mole $=6.022 \times 10^{23}$ particles)

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{H}_{2} \mathrm{D}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

How many water molecules will be formed from the reaction of 250 grams of NaOH ?

$$
\frac{6.02 \times 10^{23} \text { molech. } \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H} \mathrm{O}}{2 \mathrm{~mol} \mathrm{NaOH}} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{40 \mathrm{~g} \mathrm{NaOH}} \times \frac{250 \mathrm{~g} \mathrm{NaOH}}{1}=3.76 \times 10^{24} \text { molecules }
$$

How many moles of hydrogen atoms is that?

$$
\begin{aligned}
& \frac{2 \text { atom o H }}{1 \text { molecule } \mathrm{H}_{2} \mathrm{O}} \times \frac{3.76 \times 10^{24} \text { molecule o } \mathrm{H}_{2} \mathrm{O}}{1}=7.525 \times 10^{24} \text { atoms } \mathrm{H} \\
& \mathrm{C}_{2} \mathrm{H}_{4(9)}+3 \mathrm{O}_{2(9)} \rightarrow 2 \mathrm{CO}_{2(9)}+2 \mathrm{H}_{2} \mathrm{O}_{(9)} \\
& \frac{1 \text { mol H atm }}{12.04 \times 10^{23} \text { atom }} \times \frac{7.525 \times 10^{24} \mathrm{atam}}{1}=\frac{6.25 \mathrm{~mol} \mathrm{H}}{\text { atom } \mathrm{ms}}
\end{aligned}
$$

How many oxygen atoms will be used to make 500 grams of water?

$$
\begin{aligned}
\frac{2 \text { atoms } \mathrm{O}}{1 \text { malealco } \mathrm{O}_{2}} & \times \frac{6.02 \times 10^{23} \text { moteades }}{1 \text { mot } \mathrm{O}_{2}} \times \frac{3 \mathrm{mot} \mathrm{O}_{2}}{2 \text { mar } \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{500 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1}= \\
& =5.02 \times 10^{25} \text { atoms } \mathrm{O}
\end{aligned}
$$

\qquad
\qquad

Putting it All Together

1. A 5.0 g sample of CO_{2} is in a container at STP. What volume is the container?
2. How many grams are there in 1.5×10^{25} molecules of CH_{4} ?

$$
\frac{16 \mathrm{gCH}_{4}}{1 \mathrm{molCH}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{6.02 \times 10^{23} \mathrm{mdle} .} \times \frac{1.5 \times 10^{25} \text { molecules }}{1}=398.7 \mathrm{gCH}_{4}
$$

3. Look on Table I for the equation for the formation of ammonia gas. What volume of NH_{3} at STP is produced if 25.0 g of H_{2} is reacted with an excess of N_{2} ?
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
$\frac{22.4 \mathrm{LNH}_{3}}{1 \operatorname{mor} \mathrm{NH}_{3}} \times \frac{2 \operatorname{mot} \mathrm{NH}_{3}}{3 \operatorname{mot} \mathrm{H}_{2}} \times \frac{1 \operatorname{mot} \mathrm{H}_{2}}{2.02 \mathrm{gH}_{2}} \times \frac{25.0 \mathrm{gH}_{2}}{1}=184.8 \mathrm{LNH}_{3}$
4. How many milliliters of $\mathrm{H}_{2} \mathrm{O}$ vapor will be formed from the combustion of 120 g of propane? ($\mathrm{C}_{3} \mathrm{H}_{8}$ is propane - look at Table I for the reaction.)

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

$244,363 \mathrm{mLH} \mathrm{H}_{2}$
\qquad
\qquad
5. If you can do this one, you can do ANYTHING! How many molecules of CO_{2} will be formed from the combustion of 500 mg of propane? $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right.$ is propane - look at Table I for the reaction.) $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

Limiting Reagent \& Theoretical Yield
6. A 2.00 g sample of ammonia is mixed with 4.00 g of oxygen. Which is the limiting reactant and how much excess reactant remains after the reaction has stopped?

$$
\begin{aligned}
& \frac{30.0 \mathrm{gNO}}{1 \text { mot NO }} \times \frac{4 \mathrm{mot} \mathrm{KO}^{2}}{4 \mathrm{mot}+\mathrm{KH}_{3}} \times \frac{1 \mathrm{mothH}_{3}}{17.0 \mathrm{~g}_{\mathrm{g}} \mathrm{HH}_{3}} \times \frac{2.00_{\mathrm{g}} \mathrm{NH} \mathrm{H}_{3}}{1}=3.53 \mathrm{~g} \mathrm{NO} \\
& \frac{30.0 \mathrm{gNO}_{2}}{1 \mathrm{~mol} \times \mathrm{KO}} \times \frac{4 \mathrm{motho}}{5 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{1 \mathrm{~mol}_{2}}{32.0 \mathrm{gO}_{2}} \times \frac{4.00 \mathrm{gO}_{2}}{1}=3.00 \mathrm{~g} \mathrm{NO}
\end{aligned}
$$

O_{2} is the Limiting Reagent

$$
\frac{17.0 \mathrm{gNH}_{3}}{1 \mathrm{~mol}_{3 \mathrm{HH}_{3}}} \times \frac{4 \text { mot NH }}{3} 3
$$

$$
2.00 \mathrm{~g} \mathrm{NH}_{3} \text { (original sample) }-1.70 \mathrm{gNH}_{3}=0.30 \mathrm{~g} \mathrm{NH}_{3}
$$

\qquad

$$
\mathrm{CuCl}_{2}+2 \mathrm{NaNO}_{3} \longrightarrow 2 \mathrm{NaCl}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}
$$

7. If 15 grams of copper (II) chloride react with 20 grams of sodium nitrate, how much sodium chloride can be formed? What is the limiting reagent for the reaction? How much of the non-limiting reagent is left over (excess) in this reaction?
$\frac{58 \mathrm{~g} \mathrm{NaCl}}{1 \text { mol } \mathrm{NaCl}} \times \frac{2 \mathrm{~mol} \mathrm{NaCl}}{1 \text { mol CuCl2}} \times \frac{1 \mathrm{~mol}_{2} \mathrm{CuCl}_{2}}{133 \mathrm{~g} \mathrm{CuCl}_{2}} \times \frac{15 \mathrm{~g} \mathrm{CuCl}_{2}}{1}=13.1 \mathrm{~g} \mathrm{NaCl}$
$\frac{58 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCl}} \times \frac{2 \text { mol NaCl }}{2 \text { mod NaHO} 3} \times \frac{1 \text { mol NaNO}}{85 \mathrm{~g} \mathrm{NaNO}_{3}} \times \frac{2 \mathrm{~g}_{\mathrm{g}} \mathrm{NaNO}_{3}}{1}=13.6 \mathrm{~g} \mathrm{NaCl}$
CuCl_{2} is the Limiting Reagent
$\frac{85 \mathrm{~g} \mathrm{HaNO}_{3}}{1 \text { mol } \mathrm{NaNO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{NaNO}_{3}}{1 \text { not } \mathrm{CuCl}} 2 \mathrm{l} \mathrm{mal} \mathrm{CuCl}_{2} \times \frac{15 \mathrm{~g} \mathrm{CuCl}_{2}}{133 \mathrm{~g} \mathrm{CuCl}_{2}}=\frac{19.2 \mathrm{~g} \mathrm{NaNO}_{3}}{1}$ $20 \mathrm{~g} \mathrm{NaHO}_{3}$ (original sample) $-19.2 \mathrm{~g} \mathrm{NaNO}_{3}=0.8 \mathrm{~g}$ remaining
8. If 11.3 grams of sodium chloride are formed in the reaction, what is the percent yield of this reaction?

$$
\begin{aligned}
& \% \text { Yield }=\frac{\text { Pout }}{\text { Whole }} \\
& =\frac{11.3 \mathrm{~g}}{13.1 \mathrm{~g}} \times 100 \\
& =86 \%
\end{aligned}
$$

