Orbitals...

Electrons are part of what makes an atom an atom

Electrons are part of what makes an atom an atom

$_$_But where exactly are the electrons inside an atom?

Orbitals

are areas within atoms where there is a high probablility of finding electrons.

Knowing how electrons are

 arranged in an atom is important because that governs how atoms interact with each other
Knowing how electrons are

 arranged in an atom is important because that governs how atoms interact with each other
Knowing how electrons are arranged in an atom is

 important because that governs how atoms interact with each other
Knowing how electrons are

 arranged in an atom is important because that governs how atoms interact with each other
Knowing how electrons are arranged in an atom is

 important because that governs how atoms interact with each other
Knowing how electrons are arranged in an atom is

 important because that governs how atoms interact with each other
Knowing how electrons are arranged in an atom is

 important because that governs how atoms interact with each other
Let's say you have a room with flies flying around in it

The flies are not just anywhere in the room. They are inside boxes in the room.

You know where the boxes are, and you know the flies are inside the boxes, but...

you don't know exactly where the flies are inside the boxes

The room is an atom The flies are electrons The boxes are orbitals

The room is an atom The flies are electrons The boxes are orbitals

The room is an atom
The marbles are electrons
The boxes are orbitals

Science has determined where the orbitals are inside an atom, but it is never known precisely where the electrons are inside the orbitals

So what are the sizes and shapes of orbitals?

The area where an electron can be found, the orbital, is defined mathematically, but we can see it as a specific shape in 3-dimensional space...

The "1s" orbital is a sphere, centered around the nucleus

\square

The 2s orbital is also a sphere.

The 2s electrons have a higher energy than the 1 s electrons. Therefore, the 2\$ electrons are generally more distant from the nucleus, making the 2s orbital larger than the 1 s orbital.

1s orbital

2s orbital

Don't forget:

 an orbital is the shape of the space where there is a high probability of finding electrons
Don't forget:

 an orbital is the shape of the space where there is a high probability of finding electronsThe s orbitals are spheres

There are three $2 p$ orbitals

The three $2 p$ orbitals are oriented perpendicular to each other

another $2 p$ orbital (2px)

the third $2 p$ orbital
(2pz)

Don't forget:

 an orbital is the shape of the space where there is a high probability of finding electrons
Don't forget:

 an orbital is the shape of the space where there is a high probability of finding electrons

This is the shape of p orbitals

The three $2 p$ orbitals,
 $2 p_{x}, 2 p_{y}, 2 p_{z}$

once the

1s orbital is filled,

the 2s orbital begins to fill

once the 2 s orbital is filled,

the $2 p$ orbitals begin to fill

each $2 p$ orbital intersects the 2s orbital and the 1s orbital

each 2p orbital gets one electron before pairing begins

once each $2 p$ orbital is filled with a pair of electrons, then
the 3s orbital
gets the next two electrons
the 3s electrons
have a higher energy
than $1 \mathrm{~s}, 2 \mathrm{~s}$, or 2 p electrons,
so 3s electrons are generally found further from the nucleus than 1 s , $2 s$, or $2 p$ electrons

> What does that have to
the billions of interactions of atoms constantly going on around you depend on how the electrons are arranged in each atom
the billions of interactions of atoms constantly going on around you depend on how the electrons are arranged in each atom

the arrangement of an atom's electrons (its orbitals)
 govern how that atom will interact with other atoms

the billions of interactions of atoms constantly going on around you depend on how the electrons are arranged in each atom
the arrangement of an atom's electrons (its orbitals)
govern how that atom will interact with other atoms

If atoms did not interact with each other, you would not be sitting here reading this

\uparrow
An interesting place where electrons have a specific organization within atoms,
allowing for intersting atom interactions

An interesting place where electrons have a specific organization within atoms, allowing for intersting atom interactions

Not an interesting place, where electrons have no specific organization within atoms, where atoms wander aimlessly about
(does not actually exist)

