\qquad
\qquad

Equations

Homework Unit 9 - Topic 1

Types of Reactions

The heart of chemistry is chemical changes. They occur when one substance is converted to another substance by changing the electron arrangements of the substances. Elements can be combined to make a compound. A compound can be broken down into its elements. Also, two or more compounds may react to make more compounds.

The whole key to understanding chemical change is to understand the change involves valence electrons.

Synthesis	$A+B \rightarrow C$
Decomposition	$C \rightarrow A+B$
Single Replacement	$A+B C \rightarrow A C+B$
Double Replacement	$\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{CB}$
Combustion	$\mathrm{C}_{x} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Mole-Mole Problems

Examine the following reaction: $\mathbf{2} \mathrm{NH}_{3} \rightarrow \mathbf{3} \mathrm{H}_{2}+1 \mathrm{~N}_{2}$
If you start with 5.3 moles of NH_{3}, how many moles of H_{2} will be produced?

$$
\frac{\mathbf{3} \mathrm{mol} \mathrm{H}_{2}}{\mathbf{2 ~ m o l ~ N H}} 33 \quad \frac{5.3 \mathrm{~mol} \mathrm{NH}_{3}}{1}=7.95 \mathrm{~mol} \mathrm{H}_{2}
$$

Notice that we start with the mole ratio from the equation. Start with your ASKED FOR UNIT (in this case mol_{2}) and then add in the quantity that you're given in the word problem. Remember to cancel your units when you complete the equation to make sure you're left only with your asked for unit.

Name: \qquad

1. Given the reaction:
$2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{H}_{2}+\mathrm{Al}_{2}\left(\mathrm{SO}_{2}\right)_{3}$
The total number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed to react completely with 5.0 moles of Al is
(1) 2.5 moles
(2) 5.0 moles
(3) 7.5 moles
(4) 9.0 moles
2. Given the reaction:
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
What type of reaction is this?
(1) decomposition (combustion)
(2) double replacement
(3) single replacement
(4) synthesis
3. Given the reaction:
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
How many moles of $\mathrm{H}_{2} \mathrm{O}$ are needed to react completely with 2.0 moles of Ca ?
(1) 1.0 mole
(2) 2.0 moles
(3) 0.50 moles
(4) 4.0 moles
4. Given the reaction:
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
What mass of products are formed by the complete reaction if 1 mole of CH_{4} and 2 moles of O_{2} ?
(1) 1 gram of CO_{2} and 2 grams of water
(2) 3 grams of CO_{2} and 6 grams of water
(3) 44 grams of CO_{2} and 18 grams of water
(4) 44 grams of CO_{2} and 36 grams of water
5. Given the reaction:
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
What is the total number of moles of
$\mathrm{H}_{2} \mathrm{O}$ produced when 1.0 mole of NH_{3} is completely consumed?
(1) 0.67 moles
(2) 1.00 moles
(3) 1.33 moles
(4) 1.50 moles
6. Given the reaction:
$\mathrm{PbCl}_{2}+\mathrm{Na}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{PbCrO}_{4}+2 \mathrm{NaCl}$ What type of reaction is this?
(1) decomposition
(2) double replacement
(3) single replacement
(4) combustion
7. How many grams is equal to 7.5 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
8. How many moles is 0.44 grams of CO_{2} ?
9. Given the incomplete equation:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow ?+?
$$

Which set of products could complete and balance the incomplete reaction?
(1) $2 \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
(2) $2 \mathrm{~N}_{2}+2 \mathrm{O}_{2}$
(3) $4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
(4) $4 \mathrm{NO}+5 \mathrm{O}_{2}$

Name: \qquad
10. When the equation
$\ldots \mathrm{C}_{8} \mathrm{H}_{16}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$ is correctly balanced using the smallest whole number coefficient, the coefficient of O_{2} is
(1) 1
(2) 8
(3) 12
(4) 16
\qquad
11. Which is a correctly balanced equation for a reaction between hydrogen gas and oxygen gas?
(1) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+$ heat
(2) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+$ heat
(3) $2 \mathrm{H}_{2}+2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
(4) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Balance the equations below then classify them as decomposition (D), double replacement (DR), single replacement (SR), or combustion (C).

| Reaction - Balance it! | Classification |
| :--- | :--- | :--- |
| $\ldots \mathrm{N}_{2}+\ldots \mathrm{H}_{2} \rightarrow \ldots \ldots \mathrm{NH}_{3}$ | |
| $\mathrm{NaCl}+\ldots \mathrm{F}_{2} \rightarrow \ldots \ldots \mathrm{NaF}+\ldots \ldots \mathrm{Cl}_{2}$ | |
| $\mathrm{KClO}_{3} \rightarrow \ldots \ldots \mathrm{KCl}+\ldots \mathrm{O}_{2}$ | |
| $\mathrm{FeCl}_{3}+\ldots \ldots \mathrm{NaOH} \rightarrow \ldots \mathrm{Ne}(\mathrm{OH})_{3}+\ldots \ldots \mathrm{NaCl}$ | |

