Unit 11 - Topic 1

RedOx Reaction Skills (Review)

Chlorine has several possible oxidation states (-1, 0, +1, +3, +5, +7). Assign the proper state to Cl in each situation below:

1.	Cl ₂	C =		
2.	FeCl ₃	CI =	Fe =	
3.	NaClO ₂	CI =	Na =	0 =
4.	NaClO ₄	Cl =	Na =	O =

Nitrogen is the most complex element there is, having nine possible oxidation states (-3, -2, -1, 0, +1, +2, +3, +4, +5). Assign oxidation states to each type of atom in each substance.

5.	NH_3	N =	H =	
6.	N_2	N =		
7.	$NaNO_3$	N =	Na =	O =
8.	Ca(NO ₂) ₂	N =	Ca =	0 =

Balance each reaction. Classify each reaction. Decide if it is a REDOX reaction (yes or no).

9 Al + Cu(NO ₃) ₂ \rightarrow Cu + Al(NO ₃) ₃	
10. — $H_3PO_4 + $ KOH $\rightarrow $ $H_2O + $ K_3PO_4	
11. $_$ CH ₄ + $_$ O ₂ \rightarrow $_$ CO ₂ + $_$ H ₂ O	
12. $_$ CaCO ₃ \rightarrow $_$ CaO + $_$ CO ₂	

N	1-1	\sim	~.
1 1	a	11	е.

13. Which change occurs when a Sn ⁺² ion is	15. Given the reaction: $2Na_{(s)} + 2H_2O_{(l)} \rightarrow$
oxidized to Sn ⁺⁴ ?	$2NaOH_{(aq)} + H_{2(g)}$ Which substance
 two electrons are lost two electrons are gained two protons are lost two protons are gained 	undergoes oxidation? 1. Na 2. NaOH 3. H ₂ 4. H ₂ O
14. When a substance is oxidized, it	T. 1120
 loses protons gains protons loses electrons gains electrons 	 16. In any redox reaction, the substance that undergoes reduction will (lose or gain?) electrons and as a result the value of the oxidation number will (increase or decrease?).

For the following redox reactions, identify the species that is oxidized and the species that is reduced.

17. 2Na + $Cl_2 \rightarrow 2NaCl$

18. Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO₂

19. P + HNO₃ + H₂O \rightarrow NO + H₃PO₄

 $20. C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$