\qquad Date: \qquad

$\underset{\text { Review }}{\text { Unit }} 3$ - Topic 1

Part 1: The Matter Flow Chart

This unit will focus on COMPOUNDS, how and why they are formed, how they are named, how to write their formulas, and how they react with each other.

- Elements are the basic building block of matter that cannot be broken down by a chemical change.
- A compound is formed when atoms combine in a fixed ratio.

Ex. Formation of water (compound) from hydrogen and oxygen (elements)

1. Use Table S to compare some basic physical properties of $\mathrm{O}_{2}, \mathrm{H}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$:

Substance	Melting Point (K)	Boiling Point (K)	Density (g/mL)
O_{2}			
H_{2}			
$\mathrm{H}_{2} \mathrm{O}$	273	373	1

Based on this chart, compounds have (same or unique) chemical and physical properties?

Part 2: Exothermic \& Endothermic Changes

Exothermic: \qquad

Endothermic: \qquad

Identify each of these as either exothermic or endothermic:
a) Heating a chunk of iron until it melts. \qquad
b) $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}+$ Heat \& Light \qquad
c) Substances interacting in a test tube are changing. You touch the tube and it feels cold.

Name: \qquad Date: \qquad

Part 3: Working with Formulas

$>$ A subscript in a formula tells how many atoms of each kind are in one unit of that compound. (no subscript $=1$ atom)

Example: $\quad \mathrm{Na}_{2} \mathrm{SO}_{4} \quad 2 \mathrm{Na}, 1 \mathrm{~S}$ and 4 O in each unit
Subscripts are distributed when they are behind a parentheses, but only to the atoms in the parentheses.
Example: $\quad \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \quad 1 \mathrm{Ca}, 2 \mathrm{~N}$ and 6 O in each unit
$>$ A number before the formula is called a coefficient. This number tells how many molecules we are dealing with or describing. That number is ALWAYS distributed to all atoms.

Example: $\quad 7 \mathrm{Na}_{2} \mathrm{CO}_{3} \quad 7$ molecules of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ containing a total of $14 \mathrm{Na}, 7 \mathrm{C}$ and 21 O

How many atoms of EACH TYPE are shown by:
a) $\mathrm{NH}_{4} \mathrm{Cl}$
\#N: \qquad
\#H: \qquad
\#Cl: \qquad
b) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \# \mathrm{~N}$: \qquad
\# H : \qquad
\#P: \qquad
\#○: \qquad
c) $7\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S} \quad \# \mathrm{~N}$: \qquad
\#H: \qquad \#S: \qquad

Part 4: Reminders about Chemical Equations

When substances interact, they often end up combining their set of atoms into new and difference substances. For example:

$$
\ldots \mathrm{Ca}_{\ldots}+\mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{Ca}(\mathrm{OH})_{2}+\ldots \mathrm{H}_{2}
$$

a) How many different substances are described on the left side of the equation? \qquad
b) How many different substances are described on the right side of the equation? \qquad
c) How many types of elements are on the left? \qquad On the right? \qquad
d) The chemical equation describes a chemical change or reaction. We know this shows a chemical change because... \qquad
e) Reactants (the substances that react) are on the \qquad of the equation.
f) Products (the substances that are produced) are on the \qquad of the equation.
g) Reactants and product are separated by an \qquad . It shows the direction of the chemical change.

Name: \qquad Date: \qquad
Matter cannot be created or destroyed. It can only change forms. This is called the Law of Conservation of Matter and Energy. This means that the number of atoms on one side of a chemical equation MUST equal the number of atoms on the other side of the equation. Let's practice.

Try to balance the following ... we'll have more practice later on this unit.
\qquad $\mathrm{NaCl}+$ \qquad $\mathrm{Br}_{2} \rightarrow$ \qquad $\mathrm{NaBr}+$ \qquad Cl_{2}
\qquad Al + \qquad $\mathrm{Cl}_{2} \rightarrow$ \qquad AlCl_{3}
\qquad C + \qquad $\mathrm{O}_{2} \rightarrow$ \qquad CO

Part 5: Particle Drawings

Use particle diagrams to illustrate each of the reactions from the previous page. Use the balanced equation (notice they are the same as above).

b.) \qquad $\mathbf{A l}_{(\mathrm{s})} \quad+\quad$
$\mathrm{Cl}_{\mathbf{2}}{ }_{(\mathrm{g})}$
\rightarrow \qquad $\mathbf{A l C l}_{3(\mathrm{~s})}$

c.) \qquad $\mathrm{C}_{(\mathrm{s})}+$ _ O_{2} $\mathrm{O}_{2}(\mathrm{~g})$

