Unit 11 - Topic 2

Redox Half Reactions & Skeleton Reactions

Writing Half Reactions

<u>Reduction</u>: occurs when an atom or ion <u>gains</u> one or more electrons. The charge on the atom becomes **more negative**, or in other words, is REDUCED in value! The following half reactions are examples of reduction:

$$S + 2e^{-} \rightarrow S^{2-}$$

 $Cl_2 + 2e^{-} \rightarrow 2Cl^{-}$

<u>Oxidation</u>: occurs when an atom or ion <u>loses</u> one or more electrons. The charge on the atom becomes **more positive**. The following half reactions are examples of oxidation:

Na
$$\rightarrow$$
 Na⁺ + 1e⁻
2Br⁻ \rightarrow Br₂ + 2e⁻

Identify the following half reactions as oxidation or reduction. THEN, complete the reaction showing electrons in the right place (see examples above!).

2.
$$Mn^{7+}$$
 \rightarrow Mn^{4+}

Write the half reactions for each redox reaction below:

3.
$$Zn + HNO_3 \rightarrow Zn(NO_3)_2 + NO_2 + H_2O$$

4.
$$CdS + I_2 + HCI \rightarrow CdCI_2 + HI + S$$

Balancing Skeleton Redox Reactions

- ☐ Identify which is the oxidation half reaction and which is the reduction half reaction.
- □ Explain or show how: # of electrons lost = # of electrons gained.
- □ Combine the half reaction pairs in order to write a **balanced** skeleton reaction.
- 5. $Fe^{3+} + \underline{\qquad} e^{1-} \rightarrow Fe^{2+}$ and $Zn \rightarrow Zn^{2+} + \underline{\qquad} e^{1-}$

- 6. $Sr^{2+} + \underline{\hspace{1cm}} e^{1-} \rightarrow Sr$ and $Rb \rightarrow Rb^{1+} + \underline{\hspace{1cm}} e^{1-}$

- □Write balanced half reactions for each of the following.
- □ Indicate which half reaction is oxidation and which is reduction.
- □ Combine the half reaction pairs in order to balance the given skeleton reactions.
- 7. _____ Mg + ____ Fe³⁺ \rightarrow ____ Mg²⁺ + ____ Fe²⁺

8. ____ Al + ___ $Ti^{4+} \rightarrow$ ___ $Al^{3+} +$ ___ Ti