\qquad

Potential Energy \& Enthalpy

Video Practice Work Unit 5 - Topic 4

Potential Energy Diagram

The diagram below shows the reaction coordinate for a reversible, catalyzed and uncatalyzed reaction. Referring to the diagram, answer the questions that follow.

1. \qquad Th reaction shown above is (a) endothermic, (b) exothermic.
2. \qquad Which lettered arrow represents the energy of the reactants for the forward reaction?
3. \qquad Which lettered arrow represents the energy of the reactants for the reverse reaction?
4. \qquad Which lettered arrow represents the energy of the products for the forward reaction?
5. \qquad Which lettered arrow represents the energy of the products for the reverse reaction?
6. \qquad Which lettered arrow represents $\Delta \mathrm{H}$ for the forward catalyzed reaction?
7. \qquad Which lettered arrow represents $\Delta \mathrm{H}$ for the forward uncatalyzed reaction?
8. \qquad Which lettered arrow represents $\Delta \mathrm{H}$ for the reverse catalyzed reaction?
9. \qquad Which lettered arrow represents $\Delta \mathrm{H}$ for the reverse uncatalyzed reaction?
10. \qquad Which lettered arrow represents activation energy for the forward uncatalyzed reaction?
11. \qquad Which lettered arrow represents activation energy for the forward catalyzed reaction?
12. \qquad Which lettered arrow represents activation energy for the reverse catalyzed reaction?
13. \qquad Which lettered arrow represents activation energy for the reverse uncatalyzed reaction?
14. \qquad Which lettered arrow represents energy of the activated complex for the catalyzed reaction?
15. \qquad Which lettered arrow represents energy of the activated complex for the uncatalyzed reaction?
16. \qquad Which lettered arrow represents the difference between the activation energies of the catalyzed and the uncatalyzed reactions?
17. \qquad Which lettered arrow represents the difference between the energies of the activated complex for the catalyzed and the uncatalyzed reactions?
18. \qquad The reverse reaction is (a) endothermic, (b) exothermic.
