Name: D	ate:
---------	------

Colligative Properties

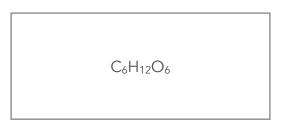
Homework Unit 10 - Topic 5 (Regents)

Colligative Properties are properties of solution that **depend only on how much solute** is dissolved **NOT** on what type of solute is dissolved.

Some of these properties are:

- FREEZING POINT DEPRESSION
- BOILING POINT ELEVATION (ebulliometry)

When NaCl, an ionic compound, is dissolved in water it forms two particles, a Na⁺ cation and a Cl⁻ anion, each surrounded by water.


$$NaCl_{(s)} + H_2O \rightarrow Na^+_{(aq)} + Cl^-_{(aq)}$$

When sugar, a *polar molecule*, is dissolved in water it remains as only one particle, a molecule surrounded by water.

$$C_6H_{12}O_{6(s)} + H_2O \rightarrow C_6H_{12}O_{6(aq)}$$

1. Draw a diagram for each of these compounds dissolved in water.

Na⁺ Cl⁻

- (a) When CaCl₂ is dissolved in water, how many particles are formed? _____
- (b) When $AlBr_3$ is dissolved in water, how many particles are formed? ______
- (c) When $Na_2(SO_4)_2$ is dissolved in water, how many particles are formed? ______
- (d) When CO_2 is dissolved in water, how many particles are formed? ______
- 2. On an equal mole basis, which of the above (a d) is most effective in lowering the freezing point or raising the boiling point of water? Explain.
- 3. Which of the following solutions will lower the freezing point the most? Explain why in the space to the right.
 - (1) 3.0 M NaCl
 - (2) 3.0 M CaCl₂
 - (3) 1.0 M NaCl
 - (4) 1.0 M CaCl₂
 - (5) pure water