\qquad
\qquad

Le Chatelier's Principle

Stresses \& Shifts F d $\underbrace{12.6 \mathrm{kcal}}+\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HI}_{(\mathrm{g})}$

Stress	Equilibrium Shift	$\left[\mathrm{H}_{2}\right]$	[2_{2}]	[HI]
Add H_{2}	right	-	decreases	increases
Add I_{2}	R	\downarrow	-	9
Add HI	-	\uparrow	\uparrow	-
Remove H_{2}	L		\uparrow	\downarrow
Remove I_{2}	-	\uparrow	-	\downarrow
Remove HI	12	\downarrow	\downarrow	-
Increase Temperature	R		\downarrow	T
Decrease Temperature	L	\uparrow	\uparrow	1
Increase Pressure	\square	-	-	-
Decrease Pressure	-	-	-	-

Answer the questions below based on your knowledge of chemistry.

1. For each of the following, what effect would an increase in pressure have on equilibrium?
(a) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \mathrm{R} \backslash G H T$
(b) $4 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CS}_{2(\mathrm{~g})} \rightleftarrows \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$

2. For each of the following, what effect would an increase in temperature have on equilibrium?
(a) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NH}_{3(\mathrm{~g})} \Delta \mathrm{H}=-92 \mathrm{~kJ}$ \qquad
(b) $\mathrm{C}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ heat $\rightleftarrows \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})}$ \qquad

Regents Practice Problems

3. Given the reaction at equilibrium:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NH}_{3(\mathrm{~g})}$
If the pressure is increase at a constant temperature, there will be an increase in the number of moles of
(1) NH_{3}, only
(2) N_{2}, only
(3) H_{2}, only
(4) both N_{2} and H_{2}
4. An increase in the temperature of a system at equilibrium favors the
(1) endothermic reaction and decreases its rate
(2) endothermic reaction and increases its rate
(3) exothermic reaction and decreases its rate
(4) exothermic reaction and increases its rate
