Unit 3 - Topic 6 Moles & Stoichiometry

Gram Formula Mass

Find the gram formula mass (also called Molar Mass) of the following compounds:

- 1. Na₃PO₄
- 2. (NH₄)₂CO₃
- 3. C₆H₁₂O₆

Gram - Mole Calculations

Given the following, find the number of moles. Show all work with DIMENSIONAL ANALYSIS

- 4. 30 grams of H₃PO₄
- 5. 110 grams of NaHCO₃

Mole - Gram Calculations

Given the following, find the number of grams. Show all work with DIMENSIONAL ANALYSIS.

- 6. 4 moles of Cu(CN)₂
- 7. 6.6 moles of ZnO

Mole Ratios

This will help you with the next part; Mole to Mole calculations. The coefficients of an equation give you the RATIO of ONE substances to ANOTHER substance. You'll need to use this any time a question gives you moles of ONE substance and asks you to find moles of a DIFFERENT substance.

$C_3H_8 \ + \ 5O_2 \ \rightarrow \ 3CO_2 \ + \ 4H_2O$

_	moles C_3H_8 : moles O_2	s C 🛵	moles CO ₂
_	$\underline{\qquad} moles O_2 : \underline{\qquad} moles CO_2 \qquad \underline{\qquad} moles$	s C ₃ H ₈ :	moles H ₂ O
-	moles CO_2 : moles H_2O moles	s O ₂ :	_moles H ₂ O
Mole-Mole Problems			
1.	$N_2 + 3H_2 \rightarrow 2NH_3$ How many moles of hydrogen are needed to completely react with two of nitrogen?	noles	
		<u></u>	
2.	$2\text{KCIO}_3 \rightarrow 2\text{KCI} + 3\text{O}_2$ How many moles of oxygen are produced by the decomposition of six m of potassium chlorate?	oles	
3.	$Zn + 2HCI \rightarrow ZnCl_2 + H_2$ How many moles of hydrogen are produced from the reaction of three m of zinc with an excess of hydrochloric acid?	oles	
4.	$C_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O$ How many moles of oxygen are necessary to react completely with four r propane ($C_{3}H_{8}$)?	noles of	
5.	$K_3PO_4 + Al(NO_3)_3 \rightarrow 3KNO_3 + AlPO_4$ How many moles of potassium nitrate are produced when two moles of p phosphate react with two moles of aluminum nitrate?	otassium	
			-