Unit 11 Instrumentation (HL)

21.1 High-resolution ¹H NMR

- High-resolution reveals more about structure
- Single peaks (shown earlier) are split into smaller parts (multiple peaks)
 - Effective magnetic field modified by the magnetic field produced by neighboring protons.
- Spin-Spin coupling!

21.1 High-resolution ¹H NMR

• CHO proton split due to CH₃ protons. 2 possible orientations for each proton (2³ combinations).

- 4 different local magnetic fields.
- 4 signals: 1, 3, 3, 1 intensities.

$\bot \uparrow \uparrow$		
↓	$\psi \psi \downarrow$	
$\uparrow \downarrow \uparrow$	$\downarrow\uparrow\downarrow$	
$\uparrow \uparrow \downarrow$	$\uparrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow$
o protons with and e against external gnetic field.	One proton with and two against external magnetic field.	All protons against external magnetic field.

21.1 High-resolution ¹H NMR

• EXAMPLE: Predict the splitting pattern produced by a neighboring -CH₂group.

21.1 High-resolution 1H NMR

Splitting patterns can be deduced from Pascal's triangle.

Number of chemically equivalent protons causing splitting	Splitting patterns with relative intensities				
0	1				
1	1 1				
2	1 2 1				
3	1 3 3 1				
4	1 4 6 1				

- Protons bonded to the same atom don't interact with each other.
- Protons on non-adjacent carbon atoms do not generally interact with each other
- exchange of protons between ethanol molecules)

• the O-H single peak in ethanol does not split unless the sample is pure (rapid

Example #2

Empirical formula C₂H₄O

a) Deduce the molecular formula
b) Draw possible structures of molecules
c) Use Table 27 to identify a structure which is consistent with the ¹H NMR and account for the number of peaks and the splitting patterns.

X-ray diffraction

- What's the most direct way to perceive an object?
- Shine a light on it!
- Visible light's way too big (large wavelength) to do that so.....
- We use X-rays (10-9 m)
- X-rays passing through a crystalline solid scatter in an orderly way
- A diffraction pattern results

X-ray diffraction

Table A-2. Bond lengths [Å] for BEDOT AD THE					
Bond	Bond distance (Å)	Bond	D 1 11		
Si1-C14	1.8575(18)	Сб. Нбл	Bond distance (A)		
Si1-C13	1.8611(15)	C7 C0	0.9500		
Si1-C15	1 8672(19)	C7-C8	1.377(2)		
Si1-C10	1.0072(10)	08-09	1.4189(19)		
S1-C10	1.0090(15)	C9-C10	1.368(2)		
S1 C7	1./300(15)	C11-C12	1.521(3)		
51-07	1.7327(14)	C11-H11A	0.9900		
01-C9	1.3761(17)	C11-H11B	0.9900		
01-C11	1.446(2)	C12-H12A	0.9900		
O1-C11'	1.464(6)	C12-H12B	0.9900		
O2-C8	1.3682(16)	C11'-C12'	1.455(6)		
O2-C12'	1.4269(19)	C11'-H11C	0.9900		
O2-C12	1.456(2)	C11'-H11D	0.9900		
N1-N1#1	1.253(3)	C12'-H12C	0.9900		
N1-C1	1.4287(18)	C12'-H12D	0.9900		
C1-C6	1.387(2)	C13-H13A	0.9800		
C1-C2	1.393(2)	C13-H13B	0.9800		
C2-C3	1.380(2)	C13-H13C	0.9800		
C2-H2A	0.9500	C14-H14A	0.9800		
C2-112	1.402(2)	C14-H14B	0.9800		
C3-H3A	0.9500	C14-H14C	0.9800		
C1 C5	1.400(2)	C15-H15A	0.9800		
C4-C7	1.4635(19)	C15-H15B	0.9800		
C5 C6	1.387(2)	C15-H15C	0.9800		
C5-45A	0.9500	HIDC-CIP-HID			
05-115/1					

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y + 2, -z.

20.0		- C - C - C	
	- 20	-	
	- 20	-	
		100	
-	per .	-	

X-ray diffraction

- By mapping electron density with monochromatic x-rays, a picture of the molecules structure can be shown.
- Sample must be in the solid state only orderly structures give ordered diffraction patterns
- First applications were for inorganic crystals, but has now been expanded to organic molecules

