Unit 11 Instrumentation (SL)

Mass, Infrared and NMR Spectroscopy

Spectroscopic Identification of Organic Compounds

- Qualitative analysis: presence but not quantity (i.e. PEDs)
- Quantitative analysis: <u>quantity</u> of substance (i.e. DUI)
- **Structural analysis**: arrangement of atoms (i.e. natural products)

Infrared (IR) spectroscopy: bond identification Mass spectroscopy: atomic/molecular mass Nuclear magnetic resonance (NMR) spectroscopy: vital structural information

Mass Spectroscopy

- find relative molecular mass of compounds
- clues about structure (fragmentation patterns)

find the mass of individual atoms and relative abundance of different isotopes.

Ethanol

Mass Spectroscopy

- electron from electron gun hits gaseous molecule.
- molecular weight fragments are deflected.

 $X(g) + e^{-} \rightarrow X^{+}(g) + 2e^{-}$

By piecing together the fragments, it's possible to form a picture of the complete structure.

Η

Ethanol

Ethanol MASS SPECTRUM

Example: Fragmentation Patterns

The simplified mass spectrum of a compound with empirical formula C₂H₅ is shown below.
(a) Explain which ions give rise to the peaks shown.
(b) Deduce the molecular structure of the compound.

to recognize the following, however:

• Don't forget to include the **POSITIVE CHARGE on the** ions detected by the instrument.

• Use Table 28 in your data booklet to help identify fragments. You're expected

Mass lost	Fragment lost
15	CH₃·
17	OH·
18	H ₂ O
28	$CH_2 = CH_2, C = O \cdot$
29	CH₃CH₂·, CHO·
31	CH ₃ O·
45	COOH·

Example

 A molecule with an empirical formula CH₂O has the simplified mass spectrum below. Deduce the molecular formula and give a possible structure of the compound.

Degree of Unsaturation/IHD

is known. How much H₂ needed to make an alkane.

Molecule	S
C ₂ H ₄	
C ₂ H ₂	
cyclobutane and but-1-ene, C_4H_8	
C₂H₅OH	
C ₂ H ₄ O	
C ₂ H ₅ Cl	

• IHD (index of hydrogen deficiency) - clue to structure once molecular formula

Infrared (IR) Spectroscopy • IR radiation absorbed by certain bonds causing them to stretch or bend, giving

- Frequency of radiation is often measured as number of waves per cm (cm⁻¹), also called the **wavenumber**.

Infrared (IR) Spectroscopy

- atoms.
- vibrate at higher frequencies than single bonds

bonds are like springs, vibrating according to bond strength and masses of the

• Light atoms vibrate at higher frequencies than heavier atoms and multiple bonds

Bond Excitation

• IR energy causes an induced dipole. The more polar the bond, the more it reacts to the IR radiation, the more intense the vibration of the bond (stretch or bend)

Stretching / bending in polyatomic molecules

- <u>Water</u> stretching & bending as a whole

- Carbon dioxide symmetrical linear molecule
- 4 modes of vibration (symmetric stretch undetectable)

• 3 frequencies of vibration all of which are detectable

symmetric stretch $\approx 3650 \text{cm}^{-1}$	asymmetric stretch $\approx 3760 \text{cm}^{-1}$	symmetric be $\approx 1600 \mathrm{cm}^{-1}$

Q	
etch	two symmetric bends $\approx 670 \text{cm}^{-1}$ The molecule has a temporary dipole
nas a	moment as it bends away from its linear
ble	geometry. The two vibrations are
the	identical, except that one is in the plane
ngths	of the page and the other is out of the
length.	plane of the page.

 Different functional groups absorb IR radiation differently and distinctly. data booklet)

Bond	Wavenumber / cm ⁻¹	Intensity
C—O	1050–1410	strong
C=C	1620–1680	medium-weak; multiple bands
C=0	1700–1750	strong
C≡C	2100-2260	variable
O—H, hydrogen bonded in carboxylic acids	2500–3000	strong, very broad
C—H	2850–3090	strong
O—H, hydrogen bonded in alcohols and phenols	3200–3600	strong
N—H	3300–3500	strong

Chemists can use that information to identify different bonds. (Table 26 of IB

 Different functional groups absorb IR radiation differently and distinctly. data booklet)

Bond	Wavenumber / cm ⁻¹	Intensity
C-0	1050–1410	strong
C=C	1620–1680	medium-weak; multiple bands
C=0	1700–1750	strong
C=C	2100–2260	variable
O—H, hydrogen bonded in carboxylic acids	2500–3000	strong, very broad
C—H	2850–3090	strong
O—H, hydrogen bonded in alcohols and phenols	3200–3600	strong
N—H	3300–3500	strong

Chemists can use that information to identify different bonds. (Table 26 of IB

 Different functional groups absorb IR radiation differently and distinctly. data booklet)

Bond	Wavenumber / cm ⁻¹	Intensity
C-0	1050–1410	strong
C=C	1620–1680	medium-weak; multiple bands
C=0	1700–1750	strong
C≡C	2100–2260	variable
O—H, hydrogen bonded in carboxylic acids	2500–3000	strong, very broad
C—H	2850-3090	strong
O—H, hydrogen bonded in alcohols and phenols	3200–3600	strong
N—H	3300–3500	strong

Chemists can use that information to identify different bonds. (Table 26 of IB

 Different functional groups absorb IR radiation differently and distinctly. Chemists can use that information to identify different bonds. (Table 26 of IB data booklet)

Bond	Wavenumber / cm ⁻¹	Intensity
C0	1050–1410	strong
C=C	1620–1680	medium-weak; multiple bands
C=0	1700–1750	strong
C≡C	2100–2260	variable
O—H, hydrogen bonded in carboxylic acids	2500–3000	strong, very broad
C—H	2850–3090	strong
O—H, hydrogen bonded in alcohols and phenols	3200–3600	strong
N—H	3300–3500	strong

- Different functional groups absorb IR radiation differently and distinctly. Chemists can use that information to identify different bonds. (Table 26 of IB data booklet)
- Hydrogen bonds!!

Bond	Wavenumber / cm ⁻¹	Intensity
C0	1050–1410	strong
C=C	1620–1680	medium-weak; multiple bands
C=0	1700–1750	strong
C=C	2100–2260	variable
O—H, hydrogen bonded in carboxylic acids	2500–3000	strong, very broad
C—H	2850–3090	strong
O—H, hydrogen bonded in alcohols and phenols	3200–3600	strong
N—H	3300–3500	strong

Let's compare propanone (acetone) and ethanol

Sample IR Spectra

Let's compare propanone (acetone) and ethanol

Sample IR Spectra

Unknown Comparisons

• The blue spectrum is pure heroin while the superimposed black spectrum is an unknown sample ... Forensics connection.

Nuclear Magnetic Resonance (NMR)

- Powerful technique for finding structure and shape of molecules
- magnets.
- field.
- Sample placed in an electromagnet, field strength is varied until nuclei flip (resonance), which can be detected.

• Nuclei of atoms with odd #s of protons (¹H, ¹³C, ¹⁹F, ³¹P) behave like tiny bar

• When placed in a magnetic field some will line up with and others against the

NMR

Non-invasive technique

 Can erase debit cards Anything ferromagnetic could be attracted to the powerful magnet • Cooled with LN₂.

- Electrons shield nucleus (where the protons live) from the magnet.
- different signals in the spectrum.
- their position in the molecule.
- Measured against a standard, tetramethylsilane (TMS).
- Position of signal relative to the standard is the chemical shift.
- TMS is therefore assigned a shift of 0 ppm
- All of the protons are in the same chemical environment.
- Chemically inert.

NMR

• Different chemical environments for various protons then exist and produce

Hydrogen nuclei (present in all organic molecules) give information about

CH₃

 CH_3

Sample Shifts

• See Table 27 for a comprehensive list.

*variance due to hydrogen bonding

Chemical shift / ppm
0
0.9–1.0
2.0–2.5
9.0–13.0*
1.0–6.0*

- Sample spectrum of ethanal.
- Integration included to show # of protons attached to carbons.

Interpreting ¹H NMR spectra

is shown here.

Example

• The ¹H NMR spectrum of a compound which has the molecular formula C_3H_8O

1. Draw structural formulas and name 3 possible isomers 2. What is responsible for the peak at 0 ppm? 3. Identify the unknown compound from the number of peaks. 4. Identify the group responsible for the signal at 0.9 ppm.

Combining Analytical Techniques

- Deduce IHD and molecular formula (Mass Spec)
- Is a CH₃ group present? (Mass Spec)
- Deduce molecular structure. (¹H NMR)

• The infrared (IR) spectrum shows one absorption close to 2900 cm⁻¹, but there is no absorption close to 1600 cm⁻¹. State what can be deduced from this.

