

Measurement \& Data Processing

Unit 1 - IB Material

- In science experiments, is it ever possible to have results that are 100\% accurate? Why or why not?
- If your results are not accurate, how do you record that in your data?

Units of Measure

NY Regents	$I B$
mL	$\mathrm{~cm}^{3}$
L	dm^{3}
$\mathrm{~mol} / \mathrm{L}$	$\mathrm{mol} \mathrm{dm}^{-3}$

Error \& Uncertainty

- Error is ALWAYS present.
- We need to assess magnitude and effect on results.
- Accuracy vs. Precision
- Systematic vs. Random Error

Accuracy

- The accuracy of a result is a measure of how close the result is to an accepted literature value. (How close to Perfect)

Percentage deviation $=\left|\frac{\text { Experimental value }- \text { Accepted value }}{\text { Accepted value }}\right| \times 100$

Precision

- How close the repetitions will be to each other. (Repeatable)
A

B

C

D

Random Uncertainties

- Limitations of the instrument or the way a measurement is made.
- Make a measurement less precise, but not in any particular direction.
-Written as an uncertainty range, ($42.20 \pm 0.05 \mathrm{~cm}^{3}$)
- 43.6, 43.5 , or 43.7 mL ?
- We are saying that the value is closer to 43.6 , but not quite 43.65 mL , so we should record our value to be $43.65 \pm 0.05 \mathrm{~mL}$.

Systematic Uncertainties

- Due to identifiable causes. Instrument error.
- Always affect error in a particular direction (smaller or larger).
- Cannot be reduced by repeating readings.
- Measure of Accuracy.

Systematic Error

Random Error

Uncertainties in Calculated Results

Addition / Subtraction

- Calculated value cannot be more precise than the least precise quantity used in the calculation.
- $7.939+6.26+11.1=25.299$ (calculator puke!).
- Answer should be 25.3 due to the number of sig figs in the problem.

Uncertainties in Calculated Results

Multiplication / Division

- The number of sig figs in the final calculated value will be the same as that of the quantity with the fewest number of sig figs used in the calc.
- $(27.2 \times 15.63) / 1.846=230.3011918$ (calculator puke) . Answer should be 230. due to sig figs (rounded down).

