

Unit 1
Quantitative Chemistry

Warm-up

* Grab a meter stick and measure the length of your What is the volume of a drop of water?" lab in centimetres.
- Write your answer on the board

S.I. (Systeme International)

S. . Units in Chemistry

- Mass kg (kilograms)
- Time: s (seconds)
- Temperature K Kelvin)
- Volume ${ }^{3}$ (cubic meters)
- Pressure - Pa (Pascals)

Error - Unavoidable, but Describable

* There are TWO types of error that can occur in any experiment
* These are not could have or would have events. These are things that actually happen during the course of any experiment and we need to be able to discuss and analyze them in order to make relevant suggestions for improvements.

Random vs. Systematic Errors

Random

Error in Precision $(+\%)$

Can be minimized by multiple trials (which any good experiment would have)

Systematic

Errorin Accuracy (how close to literature values)
Cannot be minimized by repeated experiments because it's due to incorrect use of instruments or poor experimental design.

Examples

- readability of finstrument
- changes in environment (temperature)
- misinterpreting the reading

Examples:
OAn electronic balance that isn't calibrated
-Reading the top of the meniscus
\therefore Methodological erros

Chemistry TOK

- Systematic errors cannot be reduced by simply repeating the measurement in the same way. If you were inaccurate the first time you will be inaccurate the second.
- So, how do you how you have a systematic error. Why do you trust one set of results more than another?

Measurements

3 Parts to a Measurement

* the measurement
* the uncertainty
- the unit

Uncertainty Measurements

- You are reasonably certain that your measurement is between 13.0 and 14.0 mL
* For an analogue mintrunent uncertaintyish 2 of the smallest scale division.
- Therefore, we would report this volume as $13.5 \pm 0.5 \mathrm{~mL}$
- (since the smallest scale division is 11 ml)

Your Turn...

What is the length of the bar?

Calculations with Sig Figs..

101.25
+3536.2
+123.448
3760.898
3760.9

least precise number, only one digit after decimal digits to be dropped

$$
\begin{aligned}
& \text { Significant Figures } \\
& \text { ('sig figs') } \\
& \text { Cup of coffee }= \\
& 200 \mathrm{~mL} \\
& \text { Add drop of } \mathrm{H}_{2} \mathrm{O} \\
& =0.05 \mathrm{~mL} \\
& \text { New volume: } \\
& -200 \mathrm{~mL} \text { or } 200.05 \mathrm{~mL} \text { ?? }
\end{aligned}
$$

answer round to one digit after the decimal

Practice

How Many Sig Figs?

0.00400

10,000
10,000
105.37

Error Propagation

Uncertainties are approximate!!

- $25.4+/-0.1 \mathrm{~s}$
* uncertainty in same units as measurement is the absolute uncertainty
« $25.4+1 / 0.4 \%$
* percentage uncertainty uncertainty/measurement $\times 100 \%$
n not 39370% why?
- Significant Figures the error will ALWAYS go to the same decimal place as the measurement.

What happens when...?

- You take more than one measurement?
- For example, $10.0 \mathrm{~cm}^{3}$ is delivered from a pipette $\left(1 / 0.1 \mathrm{~cm}^{3}\right)$ and repeated 3 total times.
* The total volume delivered is:
- $10.0+1 / 0.1 \mathrm{~cm}^{3}$

Error is additive!

- $10.0+1 / 0.1 \mathrm{~cm}^{3}$
- $10.0+1 /=0.1 \mathrm{~cm}^{3}$

Another example..

* When using a burette ($+/ 0.02 \mathrm{~cm}^{3}$) you subtract the initial volume from the final volume...the volume delivered is:
- Final volume $=38.46+1 / 0.02 \mathrm{~cm}^{3}$
- Initial volume $=12.15+1 / 0.02 \mathrm{~cm}^{3}$

Uncertainty in Instruments

* Analogue (graduated cylinder, burette, pipette)
* $1 / 2$ of the smallest graduation
- Digital (balance)
- scale reads 100.00 g the uncertainty is 00.01 g
mL

Rebar mass
$=69.658 \mathrm{~g}$
"Final" volume
$=22.4 \mathrm{~mL}$
"Initial" volume $=13.5 \mathrm{~mL}$

Stoichiometry Refresher

- 1 atom of Carbon $1.99265 \times 1023 \mathrm{~g}$
- 1 mole of Carbon = 2?2? 9
- How do we doit?

Avogadro's Number

* $6.023 \times 1023^{\text {ruthings" }}$ in a mole (on Tíble 1)
- Know 6×1023 for Paper 1 questions (no calculators)

Question of the day.

Would you rather be hit with?

* 400 g of solid water
- 400 g of liquid water
$\checkmark 400 \mathrm{~g}$ of gaseous water

Solid

- interparticle forces are negligible
- they are zero for an ideal gas
- no fixed shape or volume
: relatively close together
-forces are weak enough that allows the particles to change places with each other, but their movement is restricted to a fixed volume
- closely packed in fixed positions
- interparticle forces restrict movement to vibration around a fixed position
- fixed shape

Absolute Zero

- The point at which all motion stops
- The Kelvin scale emphasizes the relationship between temperature and average kinetic energy of the particles
- Particles move twice as fast @ 200K than they do @100K
\sim This is NOT true for Cel siusil! (different scale!)

Question...

Which of these samples will have the highest kinetic energy?

- He @ 100K
- O_{2} @ 300 K
- H_{2} @ 200 K
$\cdot \mathrm{H}_{2} \mathrm{O}$ @ 400 K

Heating Curve...

Heat added

Question...

A flask contains water and steam Qits boiling point Distinguish between the two states on a molecular level by referring to the average speed of the molecules and relative molecular distances.

* Answer:
\sim As the two states are @ the same temperature they have the same average KE and are moving at the same speed The separation between the particles of the gas is much arger than that in the liquid

Practice...

* $40 \mathrm{~cm}^{3}$ of CO is reacted with $40 \mathrm{~cm}^{3}$ of oxygen.
$\sim 2 \mathrm{CO}_{(0)}+\mathrm{O}_{2(6)}-2 \mathrm{CO}_{2(6)}$
* What is the volume of carbon dioxide that it produced? Assume all volumes are measured at the same temperature and pressure

Molar Volume of a Gas

 STP?
Molar Volume

- All gases have the same molar volume at the same temperature and pressure
- STP: $0^{\circ} \mathrm{C}$ or 273 K and $1 \times 10^{5} \mathrm{~Pa}$
- one mole of gas occupies $22700 \mathrm{~cm}^{3}$ or $22.7 \mathrm{dm}^{3}(\mathrm{~L})$
- @ 298 K a gas will occupy 24 L (room
 temp.)

Calculate...

* Calculate the amount (g) of chlorine gas in $44.8 \mathrm{~cm}^{3}$ @ STP

Another...

* What volume of hydrogen gas is produced when 0.056 grams of Li reacts completely with water?
- What do you need to know?
* EQUATIONI
$\because 2 \mathrm{~L}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}$ (3)2 $2 \mathrm{LiOH} \mathrm{Hog}+\mathrm{Hz}$

Gas Laws

Boyle's Law

Charlestaw

Gay Eussac's Law

Combined Gas law

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}
$$

Boyle's Law
$P V=k$

Charles' Law

$$
\frac{V}{T}=k
$$

Gay-Lussac's Law

$$
\frac{\mathrm{P}}{\mathrm{~T}}=\mathrm{k}
$$

Combined Gas Law

$$
\frac{P V}{T}=k
$$

Question...

* What is the problem with REA gases?
- Where does that go in the combined gas law formula?

IDEAL GAS LAW

$\frac{P V=\frac{n R T}{k T}}{n T} \quad R=\frac{P V}{n T}$
What is R?

$$
\begin{aligned}
& =\frac{(101.3 \mathrm{kpa})\left(22.4 \mathrm{dm}^{3}\right)}{(1 \mathrm{mok})(273 \mathrm{~K})} \\
& R=\frac{\left(1.013 \times 10^{5} \mathrm{~Pa}\right)\left(.0224 \mathrm{~m}^{3}\right)}{(1 \mathrm{mok})(273 \mathrm{~K})} \\
& \text { idealconditions: } \\
& P=101.3 \mathrm{KPaor} 1.013 \times 10^{\text {尔 }} \text {. }{ }^{5} \\
& V=22.4 \mathrm{dm}^{3} \text { or } .0224 \mathrm{~m}^{3} \\
& T=273 \mathrm{~K}
\end{aligned}
$$

Practice...

* A helium party balloon has a volume of $18.0 \mathrm{dm}{ }^{3}$. At room temperature $\left(25^{\circ} \mathrm{C}\right)$, the internal pressure is 1.05 atm. Calculate the number of moles of helium and the mass to inflate it:

