\qquad
\qquad

Unit 1 - Topic 5

Physical vs. Chemical Changes \& Endothermic vs. Exothermic Reactions
In a physical change, the original substance still exists, it has only changed in form. In a chemical change, a new substance is produced. Energy changes always accompany chemical changes.

Classify the following as being a physical or a chemical change.

1. Sodium hydroxide dissolves in water. \qquad
2. Hydrochloric acid reacts with potassium hydroxide to produce a salt, water, and heat. \qquad
3. Ice melting. \qquad
4. Milk sours. \qquad
5. Evaporation. \qquad
6. Potassium chlorate decomposes to potassium chloride and oxygen gas. \qquad

Sate whether the following reactions or processes are exothermic or endothermic.
7. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat \qquad
8. The combustion of ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$, liberates $1400 \mathrm{~kJ} / \mathrm{mole}$. \qquad
9. $\mathrm{CaCO}_{3}(\mathrm{~s})+$ heat $\rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ \qquad
10. Barium hydroxide mixed with ammonium chloride yields the gas ammonia and the flask gets cold. \qquad

Name: \qquad
\qquad

For the following, classify each statement as being either a chemical OR a physical change, as well as an exothermic OR endothermic change.

Statement	Physical OR Chemical	Exothermic OR Endothermic
Water freezes to ice at 0 degrees Celsius.		
Water boils on a stove.		
Ice becomes liquid water at 0 degrees Celsius.		

Chemical Equations \& Formulas

Chemical formulas are used in chemical equations to describe reactants and products. A subscript in a formula tells how many atoms of each kind are in a molecule. (no subscript $=1$ atom)

$$
\begin{array}{lll}
\text { Examples: } & \mathrm{H}_{2} \mathrm{O} & 2 \mathrm{H} \text { 's and } 1 \mathrm{O} \text { in each molecule } \\
& \mathrm{C}_{2} \mathrm{H}_{6} & 2 \mathrm{H} \text { 's and } 6 \mathrm{H} \text { 's in each molecule } \\
& \mathrm{Na}_{2} \mathrm{SO}_{4} & 2 \mathrm{Na}, 1 \mathrm{~S} \text { and } 4 \mathrm{O} \text { in each molecule }
\end{array}
$$

Subscripts are distributive when there are parentheses
Example: $\quad \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \quad 1 \mathrm{Ca}, 2 \mathrm{~N}$ and 6 O in each molecule
A number before the formula is called a coefficient. This number tells how many molecules we are dealing with or describing. That number is always distributive with respect to the atoms in the formula.
$\begin{array}{lll}\text { Examples: } & 2 \mathrm{H}_{2} \mathrm{O} & 2 \text { molecules of } \mathrm{H}_{2} \mathrm{O} \text { containing a total of } 4 \mathrm{H} \text { and } 2 \mathrm{O} \\ & 7 \mathrm{Na}_{2} \mathrm{CO}_{3} & 7 \text { molecules of } \mathrm{Na}_{2} \mathrm{CO}_{3} \text { containing a total of } 14 \mathrm{Na}, 7 \mathrm{C} \text { and } 21 \mathrm{O}\end{array}$
20. Tell how many molecules are in the following:
a) AlCl_{3} \qquad
b) $6 \mathrm{Na}_{2} \mathrm{SO}_{4}$ \qquad
c) a mixture of $3 \mathrm{H}_{2} \mathrm{O}$ and $2 \mathrm{CO}_{2}$ \qquad
21. Tell how many atoms of each element are in the following
a) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ \qquad
b) $3 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ \qquad
22. (IB ONLY) Balance the following equations. Remember, you cannot change subscripts (little numbers), only coefficients (big numbers in front).
a) \qquad $\mathrm{NaCl}+$ \qquad $\mathrm{Br}_{2} \rightarrow$ \qquad $\mathrm{NaBr}+$ \qquad Cl_{2}
b) \qquad $\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow$ \qquad Fe + \qquad O_{2}

