

## Unit 2 - Atomic Structure

 Relative Atomic Mass, Electron Configuration, Electrons in Atoms
## Question

- Which of the following contains more electrons than neutrons?
- H-2
- B-11
- $[\mathrm{O}-16]^{2-}$
- $[\mathrm{F}-19]^{1-}$


## Finding Relative Atomic Mass

Find the relative atomic mass of Rubidium if $77 \%$ of the sample is $\mathrm{Rb}-85$ and $23 \%$ of the sample is $\mathrm{Rb}-87$.

## Finding Relative Abundance

Boron exists in two forms B-10 and B-11. Use your periodic table to find the abundances of the two isotopes.

## Electromagnetic Spectrum

- Do we know how fast EM waves travel?
- Do they all travel at the same speed?
- How do we distinguish them?
- \# of waves that pass a point in 1 sec is called
- Are these 3 quantities (speed, distinguishing between, \#/sec) related?



## Electromagnetic Spectrum

$$
c=v \lambda
$$

$c=$ speed of light $\left(3.00 \times 10^{8} \mathrm{~m}^{\bullet} \mathrm{s}^{-1}\right)$
$v=$ frequency (waves / second)
$\lambda=$ wavelength ( nm )



## Evidence for the Bohr Model

- How can hydrogen emit AND absorb energy?
- Excited State vs. Ground State
- One packet of energy (quantum) or photon is released for every transition
- The energy $E_{\text {photon }}$ of light, is related to its frequency, $v$, by Planck's constant
- $E_{\text {photon }}=h v$
- $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
- Equations found on Table 1 and constants found on Table 2


## The Hydrogen Spectrum



## Ionization Energy

- the energy needed to remove an electron from the ground state of each atom in a mole of gaseous atoms, ions or molecules
- can have multiple ionization energies (1st, 2nd, 3rd, etc.)
- 1st: $\mathrm{Al}(\mathrm{g}) \rightarrow \mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}^{-}$
- 2nd: $\mathrm{Al}^{+}(\mathrm{g}) \rightarrow \mathrm{Al}^{2+}(\mathrm{g})+\mathrm{e}^{-}$
- the pattern will continue for each successive ionization energy


## Bohr Model

Draw a Bohr model for the element lithium...

## More Evidence for Bohr



## What does the graph show?

- Increase in energies for each electron you remove from an atom/ ion
- The jumps in energies take place when you begin taking electrons from an inner electron shell (closer to the nucleus - more exposed to + protons)


## How much do you know?

- Which is not a valid electron arrangement?

> A. $2-8$
> B. $2-3$
> C. $2-7-2$
> D. $2-8-8-1$

## How much do you know?

Deduce the electron arrangement of $\mathrm{Na}^{+}$and $\mathrm{O}^{2-}$

## Sub-Levels of Electrons

the $n^{\text {th }}$ energy level of the Bohr atom is divided into $n$ sublevels

| Principle Energy Level | Sub-level | Max \# of electrons in sub-level | Max \# of electrons in level |
| :---: | :---: | :---: | :---: |
| $\mathrm{n}=1$ | 1 s | 2 | 2 |
| $\mathrm{n}=2$ | 2s | 2 | 8 |
|  | 2p | 6 |  |
| $\mathrm{n}=3$ | 3 s | 2 | 18 |
|  | 3 p | 6 |  |
|  | 3d | 10 |  |
| $n=4$ | 4s | 2 | 32 |
|  | 4p | 6 |  |
|  | 4d | 10 |  |
|  | 4f | 14 |  |

## Waves vs. Particles

- light - described by frequency (waves) and energy of individual particles (photons)
- related by Planck's equation $\mathrm{E}=\mathrm{hv}$
- diffraction (spreading out) - wave
- scattering of electrons when light hits a metal surface particles


## The Uncertainty Principle

- Nice try, Bohr....
- electrons path can be precisely described...not so much
- the act of focusing radiation in an attempt to find an electron would do what???


## Heisenberg's Uncertainty Principle

- Cannot make simultaneous measurements to show the position and momentum (speed) of an electron at a given time

Did you know....Niels Bohr and Werner Heisenberg worked together in the early years of Quantum Theory, but found themselves on different sides of WWII when war broke out.

## Atomic Orbitals

s-Orbitals

- highlights the distinction between the wave and particle descriptions
- 1 s orbital is the closest to the nucleus and therefore have the least amount of energy
- 2s - same symmetry over a larger volume



## p Atomic Orbitals

- The p sub-levels contain 3 atomic orbitals of equal energy (they call this degenerate)
- All have dumbbell shape
- Only difference is orientation in space
- Arranged at right angles with nucleus in the center



## d and forbitals

- d sub-levels have 5 d atomic orbitals
- f sub-levels have 7 f atomic orbitals (the only ones you DON'T have to know)



## Now...Without your notes...

- Draw a 1s orbital
- Draw a $2 p_{x}$ orbital


## Electron Spin and the Pauli Exclusion Principle

- Why do electrons go in to specific orbitals?
- Why do electrons enter the 4 s BEFORE the 3 d ?
- Why don't electrons in the same orbital repel each other?
- How many electrons actually fit in an orbital?



## Another question...

- List the $4 d, 4 f, 4 p$ and $4 s$ orbitals in order of increasing energy
- Ans: 4s, 4p, 4d, and 4f
- State the number of $4 d, 4 f, 4 p$ and $4 s$ atomic orbitals.
- Ans: 5, 7, 3, 1


## Pauli Exclusion Principle

- No more than 2 electrons in any one orbital!
- If they occupy the same orbital, MUST spin in opposite directions (one clockwise and one counter clockwise)


## Aufbau Principle

- electrons are placed into the lowest available energy level first

| Element | H | He | Li | Be | $\begin{gathered} \mathbf{B} \\ 2 p \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Orbital diagrams | 1s 4 | 1s 41 | $\begin{aligned} & 2 s 4 \\ & \text { is } 46 \end{aligned}$ | $\begin{aligned} & 2 s \\ & 26 \\ & \text { is } 46 \end{aligned}$ | $\begin{aligned} & 25 \\ & \text { 2s } \\ & \text { 1s } 46 \end{aligned}$ |
| Electron configuration | $1 s^{1}$ | $1 \mathrm{~s}^{2}$ | $1 s^{2} 2 s^{1}$ | $1 s^{2} 2 s^{2}$ | $1 s^{2} 2 s^{2} 2 p^{1}$ |

What happens for Carbon? Where does the next e- go?

## So...What Happens?

- Carbon's next electron can either fill the same orbital or they can be placed in separate p-orbitals
- Hund's 3rd Rule (don't ask me what his 1st or 2nd rule was) - put them in separate orbitals to allow them to minimize the repulsion between them
- Orbitals do not overlap - unlikely to approach each other


## What about spin?

- The electrons will have parallel spins because this is found to have lower energy
- Draw electron in a box for Carbon and Nitrogen



## Lets see what you can do...

- State the full electron configuration of arsenic and deduce the number of unpaired electrons.
- $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{104} p^{3}$
- The $4 p$ orbitals each have an unpaired e-
- ans: 3 unpaired electrons


## What do you notice with these configurations?

| Electron Configuration |  |
| :---: | :---: |
| Sc: $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}$ | $\text { Sc: }[\text { Ar }] \frac{11}{4 \mathrm{~s}} \underbrace{1}_{3 \mathrm{~d}}-$ |
| Ti: $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{2}$ | $\mathrm{Ti}:[\text { Ar }] \frac{\mathbb{1}}{4 \mathrm{~s}} \underset{3 \mathrm{~d}}{1} \underbrace{1-}$ |
| $\mathrm{V}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$ | $V_{:}[\operatorname{Ar}] \frac{1 /}{4 s} 1 \underbrace{11}_{3 d}-$ |
| Cr: $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$ | $c_{n:}[A r] \frac{1}{4 s} \not \underbrace{111}_{3 \mathrm{~d}} 1$ |
| $\mathrm{Mn}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$ | $\text { Mn: }[A r] \frac{11}{4 s} \underbrace{111}_{3 \mathrm{~d}} 1$ |
| Fe: $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$ | $\text { Fe: [Ar] } \frac{11}{4 s} \underbrace{\mathbb{1} 11}_{3 d}$ |
| $\mathrm{Co}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$ | $c_{0: ~}[A r] \frac{\mathbb{1}}{\frac{1}{4 s}} \underbrace{\mathbb{1} \mathbb{1} 11}_{\text {3d }} 1$ |
| Ni: $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{7}$ | $N \mathrm{Ni}[A r] \frac{\mathbb{1}}{4 \mathrm{~s}} \underbrace{\mathbb{1} \mathbb{1} \mathbb{1} 1}_{3 \mathrm{~d}} 1$ |
| $\mathrm{Cu}:[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$ | $c_{\mathrm{c}:}\left[\text { Ar] } \frac{1}{4 \mathrm{~s}} \underset{3 \mathrm{~d}}{\mathbb{1} \mathbb{1} \mathbb{1} \mathbb{1} \mathbb{1}} \mathbb{1}\right.$ |
| $\mathrm{Zn}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10}$ | $\mathrm{Zn:}[A r] \frac{\mathbb{l}}{\mathbb{4}} \underset{3 \mathrm{~s}}{\mathbb{1}} \underbrace{\mathbb{1} \mathbb{1} \mathbb{1}}_{3 \mathrm{~d}} \mathbb{1}$ |



## Practice

- Identify the sublevel which does not exist
- 5d, 4d, 3f, 2p
- Which is the correct order of orbital filling according to the Aufbau principle?
- 4s, 4p, 4d, 4f
- 4p, 4d, 5s, 4f
- 4s, 3d, 4p, 5s
- 4d, 4f, 5s, 5p


## Practice

- State the full ground-state electron configuration of the following elements.
- V
- Se
-K
- Sr


## Practice

- State the full ground-state electron configuration of the following elements.
- $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$
- $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
- $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{104} s^{2} 4 p^{4}$
- $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{104} s^{2} 4 p^{6} 5 s^{2}$


## Practice

- Determine the number of electrons in the $d$ orbital of an lodine atom.
- 20: 10 in 3d, 10 in 4d


## More Practice...

- Deduce the number of unpaired electrons present in the ground state of a titanium atom.
- 2 - each in 3d sublevel


## Electron configurations of lons

- Using electrons in a box, find the electron configuration of an Al ${ }^{5+}$ ion
- What will be the electron it loses when it becomes a +6 ion?



Atomic number (Z)

