

Unit 4 - Bonding

Ionic, Covalent, Metallic, Molecular Shapes, Hybridization, Delocalization of E-, IMFs

Bonding Review what do you know?

<u>lonic</u>

- metal & non-metal
- transfer of electrons
- held together by opposite charge ions
- combine in lowest whole number ratio

have a lattice structure

Covalent

- NM & NM
- sharing of electrons
- forms a molecule

- Must include ALL electrons (including all lone pairs)
- if it's an ion must use brackets with a charge
- should be able to draw all of these...
 - HF, CF_3CI , C_2H_6 , NO_3^- , SO_2 , C_2H_4 , C_2H_2 , NO^+

Lewis Structures

Dative Bonds

- aka "coordinate" bonds
- one atom 'donates' a whole lone pair to be shared between the two atoms
- examples: H_3O^+ , NH_4^+ , CO

whats the relationship between length and strength??

- shorter the bond, stronger the attraction

Bond Order Single bond = 1Double bond = 2Triple bond = 3

Bond Length...

check out bond length vs. bond enthalpy in your data booklet - Tables 10&11

Polar Bonds

- results from unequal sharing of electrons...
 - how do we tell???
 - Electronegativity!!
 - introduces some ionic nature into covalent bonds
- Non-Polar: almost no difference...Polar: up to about 1.8
- Ionic: more than about 1.8

Н

 δ^+

 $\delta \delta +$ $H \xrightarrow{\times} C1$ partially partially positive negative

Cl

δ-

VSEPR theory

- shape of a molecule is determined by the repulsion between electron pairs
- Valence Shell Electron Pair Repulsion
 - applies to both bonding and non-bonding electrons
 - double and triple bonds are oriented together (single charge centre)
 - total # of <u>charge centres</u> (electron domains) around the atom determines shape
 - shape of molecules is determined by the angles between bonded atoms
 - decreases in this order:
 - Ione-lone > lone-bonding > bonding-bonding

non-bonding electrons have a higher concentration of charge (more repulsion)...repulsion

2 Charge Centers (draw Lewis structures)

 $\dot{O} = C = \dot{O}$

2 bonding pairs: 0 non-bonding pairs

3 Charge Centers

3 bonding pairs: 0 non-bonding pairs

- structure...)
 - $A|C|_3$
 - CS_2
 - SiH_4
- Answers...
 - 120°
 - 180°
 - 109.5°

Warm-up...

• Predict the bond angles for the following compound (you might need to draw a lewis

Four Charge Centres

 \bullet CH₄

4 bonding pairs: 0 non-bonding pairs

- NH_3
 - 3 bonding pairs: 1 non-bonding pair
- H_2O 2 bonding pairs: 2 non-bonding pairs

Molecules with Expanded Octets

- What does that mean?
 - Yes....more than 8 electrons around the central atom

 - possible to have 5 or 6 charge centres

 This is possible because of the d-block electrons being involved with the bonding and the similar relative energies of the p and d orbitals

Five charge centres

- If all 5 charge centres are from bonding electrons...the shape is trigonal bipyramidal
- 3 different bond angles...90, 120 and 180
- Where are they?

5 bonding pairs: 0 non-bonding pairs

5 Centres...continued • SF₄ unsymmetrical tetrahedron or 'see saw' • 4 bonding pairs: 1 non-bonding pair

• $C|F_3$

5 Centres...continued T-shaped structure • 3 bonding pairs: 2 non-bonding pairs

5 Centres...continued

I₃linear

• 2 bonding pairs: 3 non-bonding pairs

• SF₆

octahedral

• 6 bonding pairs: 0 non-bonding pairs

- square pyramidal
- 5 bonding pairs: 1 non-bonding pair

• square planar

• 4 bonding pairs: 2 non-bonding pairs

Overview...

- page 189 in your book
- Also (p. 162):
 - 1. Draw the Lewis Structure
 - 2. Electron domains around central atom
 - 3. Geometry (electron domains)
 - 4. Molecular geometry (bonding domains)
 - 5. Consider extra repulsion

entral atom s) ng domains)

Bond Polarity vs. Molecular Polarity

- You know about electronegativity...this deals with BOND polarity
- oriented within the molecule

Molecular polarity depends on the way the polar bonds are

Polar or Non-polar? POLAR? Ö=C=Ö NO!

 CO_2

 CCI_4

 NH_3

YES!

Allotropes of Carbon...

Graphene

Single layer of C atoms covalently bonded to 3 others (120* bond angles)

Good electrical conductor

Thinnest material to exist but 100 times stronger than steel

• Flexible and high MP

Si and SiO₂

Intermolecular Forces

What IMFs do you know?

Van der Waals' Forces Dipole-Dipole attraction Hydrogen Bonding

London Dispersion Forces (VdW)

- temporary
- the clouds of negative electrons surrounding the molecule causes temporary partial dipoles
- temporary charge and this ends in a temporary attraction
- strength increases as # of electrons increase

• one atom has this temporary charge and induces another to have the

London Dispersion Forces (VdW)

- explains the trend in boiling point in group 17 • $F_2 < Cl_2 < Br_2 < l_2$ (gas to liquid to solid)
- explains the boiling point trend in the simple hydrocarbons
 - $CH_4 < C_2H_6 < C_3H_8 < C_4H_{10}$

Dipole-Dipole Attraction

permanent separation of charge

- one end of molecule is partial positive (δ^+) and one end is partial negative (δ^-)
- this is called a permanent dipole

Η

 δ^+

 $\delta \delta +$ $\stackrel{\times}{-}$ Cl partially partially positive negative

CI

δ-

Hydrogen Bonding

- When a molecule contains hydrogen covalently bonded to a highly electronegative atom (F, O, N)
- large electronegativity difference causes the electrons to be pulled away from hydrogen and causes δ^+ and δ^-
- strongest form of IMF...Is NOT a bond
- responsible for H₂O's crazy properties surface tension, density

Quick Question to See if You're Paying Attention

- Arrange these compounds in order of increasing boiling point...
 - CH_3CHO , CH_3CH_2OH , $CH_3CH_2CH_3$

Metallic Bonding

Metallic Bonding

- metals tend to lose electrons when only metal atoms are present, these electrons become delocalized
- Non-directional nature of delocalized electrons "sea of electrons"
- responsible for properties of metals: malleable, ductile, conducts electricity and heat

Alloys

- Mixing of two or more metals in the molten state
- As mixture solidifies, the positive metallic ions are distributed throughout the lattice structure and bound by the non-directional, delocalized electrons (sea of mobile valence electrons)
- Have properties that are distinct from their component metals due to the different packing of the ions in the lattice

Substitutional alloy Pure metal

Interstitial alloy

Substitutional/interstitial alloy

Common Alloys: Steel, Bronze, Brass, Rose Gold

Detective work...

- Using your skills, find the molecular shape for the following compounds (feel free to use your notes and your textbook) - you may also need to draw Lewis structures
- $|F_4^+|$
- OF_2
- compound XeO₄?

What would you expect the O-Xe-O bond angle to be in the

Formal Charge

Formal Charges

Formal Valence Charge

 SO_2

Formal charge

• FC = #v.e. - (1/2 bonding + # electrons in lone pairs)

 Low FC means less electron transfer has taken place and therefore is more stable and the preferred structure

• FC = # valence electrons - # electrons assigned to atom in Lewis structure

 SO_2

XeO3

Ozone

- essential component of the atmosphere
- traps heat in order to maintain life while blocking some of the sun's radiation from reaching the Earth
- levels of about 10 ppm in the lower stratosphere maintained by a cycle of equations

Regions of the atmosphere

Free Radical Oxygen and Ozone Reactions

Oxygen dissociation

- $O_{2(q)} -\lambda < 242$ nm---> $O_{(q)} + O_{(q)}$ (free radical oxygens)
- Ozone Dissociation
 - Step 1: $O_{3(q)} -\lambda < 330$ nm ---> $O_{2(q)} + O_{(q)}$
 - Step 2: $O_{3(q)} + O_{(q)} ----> 2O_{2(q)}$ Exothermic (Slow)
- What type of energy is being absorbed by the O_2 and O_3 ?
- Why does it take a shorter wavelength to break the O_2 bond?

(Fast)

Catalytic Destruction of Ozone

- Ozone is unstable! (because it absorbs UV radiation)
- Reacts easily with compounds released by human activities
- Nitrogen oxides (NO_x) and CFCs

Reactions w/NO_x

- NO•: created in vehicle engines @ high temp.
- free radical that will react w/ozone
 - $NO + O_3 > NO_2 + O_2$
 - $NO_2 \bullet + O \bullet --- > \bullet NO + O_2$
- Net Reaction:
 - $O_3 + O_4 ---> 2O_2$

Reactions w/CFCs

Iow reactivity (unless in stratosphere)

 \bullet CCl₂F₂ --> \bullet CClF₂ + Cl \bullet (weaker C-Cl bond breaks 1st)

 \bullet C|• + O₃ ---> O₂ + C|O•

 \bullet CIO• + O• ---> O₂ + CI•

Net reaction?

$O_3(q) + O = --> 2O_2(q)$

Hybridization

p orbitals

sp² nybria orbitals (trigonal planar)

Bonding revisited

- How does bonding happen if electrons are in orbitals???
 - Overlap of different orbitals
 - can overlap end to end or side to side
- this overlap creates a new molecular orbital that is at a lower energy

the sigma (σ) bond

- can happen between two 's' orbitals, two 'p' orbitals or an s and p orbital
- the electron density lies between the two nuclei

• when the overlap occurs along the bond axis (on a line between the two nuclei)

the pi (n) bond

- when two 'p' orbitals overlap sideways
- axis

cannot have a pi bond, without having a sigma bond take place first; therefore, if a pi bond exists, it is a part of a double or triple bond.

• the electron density is concentrated in two places lies above and below the bond

X = X $\sigma = X$ $\sigma = X$ $\sigma = X$

- What is carbon's electron configuration?
- Draw its electron in a box diagram...

- How many bonds does carbon generally form?
- Does this make sense? What must happen?

sp³ hybridization

 when carbon forms 4 single bonds

• each hybrid orbital overlaps with the atomic orbital of another atom, causing 4 sigma bonds

sp² hybridization

occurs when carbon forms a double bond

 forms 3 sp² orbitals and one unhybridized p orbital

the unhybridized p-orbital is available to form a pi bond between the carbon atoms:

3 sp² sigma bonds and 1 pi bond

sp hybridization

- when carbon forms a triple bond, it undergoes sp hybridization
- the 2 hybrid orbitals form sigma bonds (one between them and one with another atom)
- the two other orbitals (unhybridized p's) will form the two other bonds between the atoms --> pi bonds

Predicting molecular shape..

- that undergoes hybridization:
 - sp³
 - sp²
 - sp

• Please predict the molecular shape of a molecule

these are all related...

number of charge centres \leftrightarrow shape of the molecule \leftrightarrow hybridization

Delocalization of Electrons

What is it?

- We know covalent bonding as electrons being shared in a fixed position
- Sometimes, electrons have more freedom and are less restricted than this
- the tendency is to be shared between more than one bonding position this is called delocalization
- the delocalized electrons spread themselves out and are more stable

What happens?

- As discussed before...nitrate will undergo resonance
- more specifically, the electrons are delocalized and are shared among the three positions

Benzene

- three slides back...
- the electron density will lie above and below the plane of the molecule
- these are the 'pi' bonds (the sigma bonds are in between the C atoms)

- gives benzene great stability and generally unreactive
- into your skin through contact with gasoline found to cause leukemia

More Benzene

• benzene is a molecule that can be inhaled through contaminated air or absorbed

delocalized

Question...

to potential resonance structures

• Compare the structures of CH₃COOH and CH₃COO- with reference

Properties of compounds with delocalized electrons

- Bond Lengths and strength
 - Bond order
 - # of shared pairs / # of bond positions
 - single bond = 1
 - double bond = 2
 - triple bond = 3
 - $NO_{3^{-}} = 4/3 = 1.33$

- Greater Stability
 - delocalization spreads the electrons as far apart as possible in order to minimize the repulsion between them
 - less chemically reactive
 - extra energy (resonance energy) must be put in to disrupt the delocalized pi bond

More on stability

• ethanol: $C_2H_5OH vs. C_2H_5O^-$

• phenol: C_6H_5OH vs. $C_6H_5O^-$

• ethanoic acid: CH₃COOH vs. CH₃COO-

Properties of compounds with delocalized electrons

• electrical conductivity in graphite

delocalized bonds

• due to the freedom electrons have in the

Physical Properties

Physical Properties

- MP and BP
- Solubility
- Electrical Conductivity
- you are responsible for review this on your own pages 178-180 in your books
- a good way to study would be to complete the questions on pg 181
 - Review Metallic Bonding strength (# of e-, charge, cation radius)
 - IMFs Van der Waals