

Particle Behavior in States of Matter Unit 4

Particle Behavior

Topic 1

1. In which diagram do the particles move the fastest?
2. Which of these phases could be described as fluids? How do you know?
3. In terms of particles, which phase is compressible?

Phase Transitions

-Energy transferred between objects of different temperature.
-Heat flows from warm to cold.
-Produced by particle motion.
-Depends on sample size

- Measure of Average Kinetic Energy.
-Random motion of particles.
-Can be measured quantitatively
-NOT dependent on sample size

Which has more Heat? Higher Temperature?

How do we measure Temperature?

Negative Energy?

The Kelvin Scale

$373 \mathrm{~K}:\left(100^{\circ} \mathrm{C}\right) \mathrm{BP}$ of $\mathrm{H}_{2} \mathrm{O}$
$273 \mathrm{~K}:\left(0^{\circ} \mathrm{C}\right) \mathrm{FP} / \mathrm{MP}$ of $\mathrm{H}_{2} \mathrm{O}$
$0 \mathrm{~K}:\left(-273^{\circ} \mathrm{C}\right.$, Absolute Zero) no molecular movement

$$
\text { K = }{ }^{\circ} \mathrm{C}+273 \text { (Table T) }
$$

Temperature Conversions
$\mathrm{K}={ }^{\circ} \mathrm{C}+273$ (Table 7)

298 K to ${ }^{\circ} \mathrm{C}=$
$37^{\circ} \mathrm{C}$ to $\mathrm{K}=$
$-25^{\circ} \mathrm{C}$ to $\mathrm{K}=$
245 K to ${ }^{\circ} \mathrm{C}=$

Temperature Conversions

 $K={ }^{\circ} \mathrm{C}+273$ (Table T)298 K to ${ }^{\circ} \mathrm{C}=25^{\circ} \mathrm{C}$
$37^{\circ} \mathrm{C}$ to $\mathrm{K}=310 \mathrm{~K}$
$-25^{\circ} \mathrm{C}$ to $\mathrm{K}=248 \mathrm{~K}$
245 K to ${ }^{\circ} \mathrm{C}=-28^{\circ} \mathrm{C}$

Regents Practice

Which temperature represents absolute zero?
(1) 0 K
(2) $0^{\circ} \mathrm{C}$
(3)273 K
(4) $273^{\circ} \mathrm{C}$

At which temperature does a water sample have the highest average kinetic energy (1) $0^{\circ} \mathrm{C} \quad$ (2) $100^{\circ} \mathrm{C}$ (3) 0 K
(4) 100 K

Particle Attractions

Topic 2
Stations \#2, 8 and 9

Intermolecular Forces (IMFs)

IMFs - attraction between particles

Concepts to Consider

Particle Attraction

As heat is removed from a gas
Particle Speed
Average Kinetic Energy

Concepts to Consider

Particle Speed
Average Kinetic Energy

As heat is added to a solid:

Particle Attraction

Melting Point
 ©
 $4 \stackrel{\square}{\square}$

Boiling Point

Viscosity

Resistance to Flow

Regents Practice

Which of the following has the strongest forces of attraction?
(1) $\mathrm{CO}_{2(\mathrm{~s})}(3) \mathrm{CO}_{2(\mathrm{~g})}$
(2) $\mathrm{CO}_{2(\mathrm{I})}(4) \mathrm{CO}_{2(\mathrm{aq})}$

Behavior of Gases

Topic 3

Stations \# 5 and 7

Pressure

PSI - pounds per square inch

- Gas molecules hitting the walls of a container... that's Pressure!

Elastic Collisions

No energy is lost after the collision.

Kinetic Molecular Theory (KMT)

Ideal vs Real Gases

IDEAL GASES

- Random, continuous motion
- Volume is negligible (no volume)
- NO attractive forces
- Elastic collisions

Real Gases behave like Ideal Gases when

High Temperature
Large Volume
Low Pressure

REAL GASES

- Have mass
- Have attractive forces

Pressure, Volume, and Temperature

Pressure, Volume, and Temperature

Your turn...

As temperature increases, what will happen to the pressure?

As temperature increases, what will happen to the volume?

Gas Relationships

Pressure / Volume Volume / Temperature
 Volume

Pressure / Temperature

Combined Gas Law

Table T

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

P = pressure
$V=$ volume
T = temperature (K)

Combined Gas Law

Table T

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

P = pressure
$V=$ volume
T = temperature (K)

Example Problems

ESA Format
Equation:

Substitute (with units):
Answer (with units):
A balloon at STP is compressed from $3 L$ to $2 L$. The temperature is constant. What is the pressure?

Example Problems

ESA Format

Driving your car down the road, the temperature of your tires increase from $26^{\circ} \mathrm{C}$ to $38^{\circ} \mathrm{C}$. While at constant volume, the pressure at $38^{\circ} \mathrm{C}$ is 350 kPa . What was the original pressure?

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Example Problems
ESA Format

$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$

As a balloon rises to the upper part of the atmosphere, the temperature, pressure, and volume change. The temperature at the surface is $25^{\circ} \mathrm{C}$ and in the upper atmosphere the temperature is
$-15^{\circ} \mathrm{C}$. The pressure decreases from 1 atm to 0.45 atm . If the original volume is 2.75 L , what is the final volume?

Regents Practice

Which of the following can be compressed under pressure?
(1) $I_{2(s)}$
(2) $I_{2(1)}$
(3) $I_{2(g)}$
(4) $\mathrm{I}_{2 \text { (aq) }}$

A 100 milliliter sample of a gas is enclosed in cylinder under a pressure of 101.3 kPa . What volume would the gas sample occupy at a pressure of 202.6 kPa , temperature remaining constant?

50 mL (2) 100 mL (3) 200 mL (4) 380 mL
As the pressure on a given sample of a gas increases at constant temperature, the mass of the sample
(1) decreases
(2) increases
(3) remains the same

Vapor Pressure
Topic 4
Station \#8

Water

Vapor Pressure Table H

Vapor pressure is a measure of the tendency of a material to change into the gaseous or vapor state, and it increases with temperature. (The temperature at which the vapor pressure at the surface of a liquid becomes equal to the pressure exerted by the surroundings is called the boiling point of the liquid.)

Low Temperature

High Temperature

Atmospheric Pressure

Vapor Pressure

Table H
$\mathrm{H}_{2} \mathrm{O} V \mathrm{VP} @ \mathrm{BP}$?

Low Vapor Pressure = STRONG IMFs (ethanoic acid)

High Vapor Pressure = WEAK IMFs
(propanone)

Table H
Vapor Pressure of Four Liquids

Regents Practice

When the vapor pressure of a liquid in an open container equals the atmospheric pressure, the liquid will
(1) freeze (2) crystallize
(3) melt (4) boil

Phase Changes
Topic 5
Station \#9

Things to Consider...

Horizontal (plateaus) = phase change

1. Melting $\left(0^{\circ} \mathrm{C}\right)$
2. Boiling $\left(100^{\circ} \mathrm{C}\right)$

Notice! Temperature remains constant during the phase changes!!

Cooling Curves

Fill this in!

Regents Practice

Which term represents the change of a substance from the solid phase to the liquid phase?
(1) condensation
(2) vaporization
(3) evaporation
(4) fusion

Which change of phase is exothermic?
gas to liquid
(2) solid to liquid
(3) solid to gas
(4) liquid to gas

As ice melts at standard pressure, its temperature remains at $0^{\circ} \mathrm{C}$ until it has completely melted. Its potential energy
(1) decreases
(2) increases
(3) remains the same

1. Identify the process that takes place during line segment DE of the heating curve.
2. Identify a line segment in which the average kinetic energy is increasing.

Topic 1 - Particle Behavior in States of Matter

ESSENTIALS: Know, Understand, and Be Able To...

\square The three phases of matter (solids, liquids and gases) have different properties.
\square Use a simple particle model to differentiate among properties of solids, liquids, and gases (organization of matter and how they fill their containers).
\square Describe the differences in the types of particle motion (vibrating, rotating and sliding) for the 3 phases
\square Describe which phases are described as "fluids," and explain what it means to be a fluid at the particle level
\square Describe which phase is compressible, and explain why from a particle perspective
\square Temperature is not a form of energy. Temperature is not the same thing as "heat."
\square The temperature of a sample of matter is determined by the amount of movement its particles have. More particle motion = higher temperature.
\square Kinetic energy is energy due to the motion of the particles in a material. The particles in a sample of matter have three possible ways of moving: vibrating in place, rotating (spinning), and sliding past one another.
\square Potential energy is energy that is "stored" in a material, the amount of which is determined by the structure of the particles and/or their positions relative to each other
\square Absolute zero is the temperature at which all particle motion ceases (kinetic energy becomes zero); this is therefore the lowest possible temperature in the universe.
\square Chemists primarily use the Celsius and Kelvin temperature scales.
\square Convert temperatures in Celsius degrees $\left({ }^{\circ} \mathrm{C}\right)$ to Kelvin (K), and Kelvin to Celsius.

TEXT REFERENCES: p. 385-396

Topic 2 - Particle Attractions (IMFs)

ESSENTIALS: Know, Understand, and Be Able To...

\square How particles are arranged (what phase they are in) is dependent on their energy and the effect this has on their attractions for each other.
\square As particles gain energy, the attractions between them decrease.
\square The strength of attractions between particles can be evaluated based on the property of viscosity.
\square Viscosity is a property related to how easily a liquid pours, or flows
TEXT REFERENCES: p. 385-396

Topic 3 - Kinetic Molecular Theory \& Gases

ESSENTIALS: Know, Understand, and Be Able To..

\square Kinetic molecular theory describes the relationships of pressure, volume temperature, velocity, and frequency and force of collisions among gas molecules.
\square Pressure is force per area
\square Convert units of pressure from atmospheres to mmHg to kiloPascals. Be familiar with others, including torr and $\mathrm{lb} / \mathrm{in}^{2}$ (aka "psi").
\square Explain the source of atmospheric pressure, why it changes with elevation, and how it is measured (barometers).
\square Explain the source/cause of P, V, and T for gases, using KMT (Kinetic Molecular Theory)
\square Explain various phenomena from a KMT perspective (factors affecting rate of evaporation, effect of changes in P and T on gas volume, expansion of hot air balloons with increasing elevation in the atmosphere

TEXT REFERENCES: p. 413-429

ESSENTIALS: Know, Understand, and Be Able To...

\square Explain the source of vapor pressure, what conditions must be met in order to measure it, and why it always increases with temperature.The strength of attractions between particles can be evaluated based on the property of vapor pressure.
\square Use Table H in order to determine normal and reduced pressure boiling point temperatures and relative strengths of the particle attractions for the four liquids.

TEXT REFERENCES: p. 413-429

Topic 5 - Heating Curves

ESSENTIALS: Know, Understand, and Be Able To...

\square The strength of attractions between particles can be evaluated based on properties such as melting and boiling points, heat of fusion and heat of vaporization, vapor pressure and viscosity.
\square The structure and arrangement of particles and their interactions determines the physical state of a substance at a given temperature and pressure.
\square Phase changes are physical changes.
$\square_{\text {Phase changes can be either exothermic or endothermic. }}$
\square Explain phase change in terms of the changes in particle energy and attractions.
\square Distinguish between endothermic and exothermic phase changes, by writing "heat energy" correctly into a phase change equation, or by using experimental data.The concepts of kinetic and potential energy can be used to explain physical processes that include: fusion (melting), solidification (freezing), vaporization (boiling, evaporation), condensation, sublimation and deposition.nterpret heating or cooling curves in order to determine melting/boiling points, energy absorption as KE or PE, particle movement, arrangement and interactions.

TEXT REFERENCES: p. 523, 385-396, 413-429

