

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad $+$

Avogadro's Law

Equal volumes of different gases at the same temperature and pressure contain the same number of moles of particles!

1 mole of a gas = 22.7 L (at standard pressure)

$P V=n R T$

You will be given these:

$$
\begin{aligned}
& \mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \mathrm{R}=8.314 \mathrm{dm}^{3} \mathrm{kPa} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \mathrm{R}=62.4 \mathrm{~L} \mathrm{~mm} \mathrm{Hg} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

Ideal Gas Law...
 Ideal Gas Law...

$$
\begin{aligned}
P & =\text { pressure }(a t m, k P a, m m ~ H g) \\
V & =\text { volume }\left(\mathrm{L} \text { or } \mathrm{dm}^{3}\right) \\
n & =\# \text { of moles of gas } \\
\mathrm{R} & =\text { ideal gas constant } \\
\mathrm{T} & =\text { temperature }(\mathrm{K})
\end{aligned}
$$

$R=0.0821 \mathrm{Latm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
$R=8.314 \mathrm{dm}^{3} \mathrm{kPa} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
$R=62.4 \mathrm{~L} \mathrm{~mm} \mathrm{Hg} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$

-

Example Problem

$P V=n R T$

Calculate the volume of 10.0 moles of He gas at a pressure of 300 kPa and $50.0^{\circ} \mathrm{C}$.

Maxwell-Boltzmann Distribution

- Distribution of the kinetic energy of particles.
- \# of particles = constant
- Higher temperature = higher kinetic energy of particles

