

Unit 6
 Kinetics

Reaction Rates/Mechanisms
Collision Theory
Rate Expression Activation Energy

Rates of Reaction:

- time vs. rate: what's the difference?
- units of each?

- time: seconds
- rate: $1 /$ seconds
- reaction rate: describes how quickly a reaction happens
- how quickly the reactants are converted into products

Rate of Reaction:

=change of product concentration / time

- units?
- concentration $=\mathrm{mol} \mathrm{dm}^{-3}$
- rate $=1 / \mathrm{sec}$
- rate of reaction $=\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$

Rate of Reaction

- how to find rate of reaction on a curve...
- use the tangent, will treat a curve as a single point

Change in reaction rate with time
gradient might be negative, rate will be positive (always)

Overall...

- What do you notice about the overall rate of reaction?
- The beginning of reaction? The end?

Measuring rates of reaction

Different Techniques:

- change in volume of a gas
- change in mass
- change in transmission of light (colorimetry/spectrophotometry)
- Titration
- Conductivity
- Clock reactions

Change in Volume of Gas

measuring techniques:

- gas syringe
- inverted burette - bubble the gas through the liquid
- to minimize error use warm water (why?)

Change in mass

- use a porous membrane to allow gas to escape (cotton balls will work)
- measure the change
- doesn't work well with hydrogen...why?

Change in Color

- works with coloured solutions (transition metals...etc)
- change in absorbance of the solution is measured over time

Titration ano conouctivity

- Titration - measure the concentration of the reactants or products by titrating the solution with a 'standard' solution of known concentration
- Conductivity - can be measured and compared to the total number of ions in solution (side of the rxn with more ions will be more conductive)

Clock Reactions

- Video!
- Using something observable as an arbitrary 'endpoint'

Collision Theory

how to have a successful collision...
what do we need?

Kinetic Energy and Temperature

- Not all particles have same KE (avg. KE -- temperature)
- Shown by Maxwell-Boltzmann distribution curve
- simulation

Energy of collision

- what's the minimum amount of kinetic energy needed to react called?
- ACTIVATION ENERGY

Reaction Path

Energy

- Only certain particles will have the energy to reach the threshold and are able to complete the reaction

Geometry of Collision

- Do they collide with the proper orientation?
- Will the collision be effective?
(a)

reactant molecules approach each other
(b)

reactant molecules approach each other

ineffective collision no reaction occurs

effective collision particles have correct collision geometry so reaction occurs

reactant molecules separate - no product formed

product molecules formed

Factors Affecting Rate of Reaction

You know these:
 - Temperature

- Concentration
- Particle size

You may know these:

- Pressure
- Catalyst

*

Temperature

- What happens to the kinetic energy if we increase the Temperature?
- Many reactions double their rate with a $10^{\circ} \mathrm{C}$ increase

Concentration

- Higher concentration has more particles involved and therefore will have more collisions and more of those collisions will be successful

Particle Size

On April 5, 2010, metal mining equipment created a spark as it hit rock along a passage of the Upper Big Branch mine, then owned by Massey Energy Company. That spark ignited a pocket of methane gas, which ignited a large quantity of highly explosive coal dust. Twenty-nine miners died, two were injured and Massey Energy was engulfed in accusations of negligence and willful concealment of unsafe conditions.

Pressure

- What do you think?

Catalyst

- a substance that increases the rate of a reaction without itself going through a chemical change
- provides an 'alternate route for reaction' - has a lower activation energy

extent of reaction

Catalysts

- certain manufacturing processes use catalysts to increase efficiency and yield (many are a closely guarded secret)
- Every biological reaction uses a catalyst...called enzymes
- Used in making cheese
- Field of biotechnology is developing these applications rapidly

Catalysts

- In review - more particles will have the energy to "get over the hump" (activation energy) due to the fact a catalyst was used

16.1 Rate Expression

- This graph shows the absorbance of the decomposition of $\mathrm{C}_{60} \mathrm{O}_{3}$ over time

Rate vs Absorbance

- What's true about this chart?
- Reaction rate is directly proportional to the concentration

Rate Constant

- We know: rate $\propto\left[\mathrm{C}_{60} \mathrm{O}_{3}\right]$
- This can be converted to an equation using a constant
- reaction rate $=\mathrm{k}\left[\mathrm{C}_{60} \mathrm{O}_{3}\right]$
- This is called the rate expression or the rate law
- It is considered a first-order reaction because the concentration of the reactant is raised to the first power

Rate Expression

In general, the rate is proportional to the product of the concentration of the reactants, raised to a power

- $A+B \rightarrow$ products
- Rate $\propto[A]^{m}[B]^{n}$ or rate $=k[A] m[B]^{n}$
- The powers to which the concentrations are raised in the rate expression, m and n, are known as the orders of reaction
- The overall order for the reaction is $m+n$

Example

- The reaction $2 \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{NO}_{(\mathrm{g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{N}_{2(\mathrm{~g})}$ is shown to be the second order with respect to NO and first order with respect to H_{2}.
- Give the rate expression for this reaction and its overall order.

Notice...

- The orders of reaction cannot be determined by looking at the coefficients of the reactants.
- Reaction order can only be determined experimentally
- There is no prediction to be made by looking at the coefficients

Another...

- The rate expression for the reaction
- $\mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{3(\mathrm{~g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
is: rate $=\mathrm{k}[\mathrm{NO}]\left[\mathrm{O}_{3}\right]$
- What is the order with respect to each reactant and what is the overall order of the reaction?

Units of k, the Rate Constant

Zero Order

Rate $=k$
$k=$ units of rate
$=\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
First Order
Rate $=k[\mathrm{~A}]$
to the board...

Second Order

Rate $=k[A]^{2}$
to the board...
Third Order
Rate $=k[A]^{3}$
again...

Example

A reaction has the rate expression:

$$
\text { rate }=k[A]^{2}[B]
$$

Calculate the value of k, including units, for the reaction when the concentrations of both A and B are $2.50 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ and the rate is $7.75 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$

Zero Order Reactions

- rate $=k[A] 0$ or rate $=k$
- concentration does not affect the rate

First Order Reactions

- rate $=k[A]$
- concentration is directly proportional to the rate
this graph shows a straight line with gradient, k

Second Order Reactions

- rate $=k[\mathrm{~A}]^{2}$
- rate is proportional to the square of concentration of A

is a parabola, gradient is proportional to concentration and is initially zero

Putting it all Together

Half-life

- First order reactions have a constant half-life
- if the time is measured to decrease the amount of starting reactant by half, this interval is independent of the initial concentration
- Only true for $1^{\text {st }}$ order reactions
- shorter the half life, faster the reaction rate

Determining the Order of a Reaction

Initial Rates Method

Involves carrying out different reactions by changing concentrations while holding others constant

Finding Order of Reaction

1. If changing the concentration of A has no effect on the rate, the rate must be zero order with respect to A
2. If changes in A produce proportional changes in rate, it must be first order with respect to A (doubling concentration doubles the rate)
3. If changes in A leads to an increase equal to the square of the change, the reaction is second order with respect to A (doubling concentration leads to 4-fold increase)

Example

- Use the data in the table below to work out the order of reaction with respect to A and B. Also, decipher the rate expression for the reaction.

Experiment \#	Initial Concentrations (mol dm-3)		Initial Rate
	$[\mathrm{A}]$	$[\mathrm{B}]$	
1	0.1	0.1	2.0×10^{-4}
2	0.2	0.1	4.0×10^{-4}
3	0.3	0.1	6.0×10^{-4}
4	0.3	0.2	2.4×10^{-3}
5	0.3	0.3	5.4×10^{-3}

Reaction Mechanism

- Most reactions occur at a measurable rate that occur as a "series of steps"
- Usually, the products of a single step are used as a reactant in a subsequent step - exist only as "intermediates"

$$
\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

This reaction happens in the following steps:

$$
\begin{aligned}
& \text { step 1: } \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{NO}_{2(\mathrm{~g})} \rightarrow \mathrm{NO}_{(\mathrm{g})}+\mathrm{NO}_{3(\mathrm{~g})} \\
& \text { step 2: } \mathrm{NO}_{3(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}
\end{aligned}
$$

the overall reaction can be found by canceling the common reactants/ products

Molecularity

used in reference to the number of species involved
unimolecular - uses a single reactant particle
bimolecular - uses two reactant particles
In our reaction, both steps were bimolecular

Rate Determining Step

- On your way to school...do you get stuck anywhere?
- The slowest step in a chemical reaction will determine the overall rate - this is the rate determining step (RDS)

Rate Determining Step

Rate Expression and Mechanism

- Rate determining step - single molecular event
- Collision theory - if a species has a concentration in a reaction, it must be a part of the rate law (expression)

Equation for rate determining step	Molecularity	Rate law
$A \rightarrow$ products	unimolecular	rate $=k[A]$
$2 A \rightarrow$ products	bimolecular	rate $=k[A]^{2}$
$A+B \rightarrow$ products	bimolecular	rate $=k[A][B]$

Finding the Rate Law

Rate law is dependent on rate determining step

$$
2 \mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

Mechanism:

- step 1: $\mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{(\mathrm{g})}$ slow - RDS
- step 2: $\mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})}+\mathrm{Cl}_{(\mathrm{g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$ fast
- Which step determines the rate of reaction?
- What will the rate expression for that step look like?
- rate $=\mathrm{k}\left[\mathrm{NO}_{2} \mathrm{Cl}\right]$
- first order reaction

What happens when the rate determining step doesn't happen 1 st?

$$
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

- mechanism:
- step 1: $\mathrm{NO}_{(\mathrm{g})}+\mathrm{NO}_{(\mathrm{g})} \rightarrow \mathrm{N}_{2} \mathrm{O}_{2(\mathrm{~g})}$ fast
- step 2: $\mathrm{N}_{2} \mathrm{O}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$ slow - RDS
- So...rate depends on step 2
- rate $=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right]$

Continued

- rate $=k\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right]$
-BUT! - $\mathrm{N}_{2} \mathrm{O}_{2}$ is a product of the first equation!
- Substitute the rate expression from the first reaction:
- rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$
\therefore This is a third order reaction

Example

If the mechanism of a reaction is:

$$
\begin{array}{ll}
\mathrm{AB}_{2}+\mathrm{AB}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{~B}_{4} & \text { slow } \\
\mathrm{A}_{2} \mathrm{~B}_{4} \rightarrow \mathrm{~A}_{2}+2 \mathrm{~B}_{2} & \text { fast }
\end{array}
$$

1. What is the overall equation for this reaction?
2. What is the rate expression for this reaction?
3. What units will the rate constant have in this reaction?

16.2 Activation Energy

- Rate of reaction depends on:
- k : the rate constant
- the concentration of the reactants
- Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]$
-Where does temperature fit in?

Activation Energy

- If activation energy is high, a small temperature change will cause a large increase in the number of particles with sufficient energy to react
- If activation energy is small, a small temperature change will not do much to change the overall rate

- Therefore, the temperature dependance of k depends on the value of the activation energy
- Equation Time!!

Arrhenius Equation

- The fraction of molecules with enough energy to react (enough Activation energy, E_{a}) at temperature T is proportional to $e^{-E a / R T}$
$\bullet \mathrm{R}=$ gas constant $=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
- $\mathrm{T}=$ absolute temperature in Kelvin
$\therefore \mathrm{k} \propto \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}$ or $\mathrm{k}=\mathrm{A} \mathrm{e}^{-E a / R T}$

Arrhenius Equation

$\mathrm{k}=\mathrm{A} \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}$
A - the Arrhenius constant
Let's try to make sense of this...take the natural log of both sides
$\ln \mathrm{k}=-\mathrm{E}_{\mathrm{a}} / \mathrm{RT}+\ln \mathrm{A}$
This equation will give a straight line with gradient $-E_{a} / R$ and y intercept, $\ln \mathrm{A}(y$-axis $=\ln k, x$-axis $=1 / T$)
Both equations are in IB Data Booklet...yay!

Solving simultaneous equations

Activation energy can also be calculated from values of the rate constant, k, at only two temperatures. The formula is derived as follows:

At temperature T_{1} where the rate constant is k_{1} :

$$
\ln k_{1}=-\frac{E_{\mathrm{a}}}{R T_{1}}+\ln A
$$

At temperature T_{2} where the rate constant is k_{2} :

$$
\ln k_{2}=-\frac{E_{\mathrm{a}}}{R T_{2}}+\ln A
$$

By subtracting the second equation from the first, we can derive the following equation:

$$
\ln \frac{k_{1}}{k_{2}}=\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

This equation is also given in section 1 of the IB data booklet.
$2 \mathrm{NO}_{2} \rightarrow \mathbf{2} \mathbf{N O}+\mathrm{O}_{2}$

