Unit 6 Solutions

Topic 1 (Review)

+ What does (aq) mean? -- dissolved in water.
+ Solution: a homogeneous mixture; solutes dissolved in solvents
+ Solute: dissolved particles in a solution (i.e. $\mathrm{NaCl})$
+ Solvent: the dissolving medium in a solution $\left(\mathrm{H}_{2} \mathrm{O}\right)$
+ Saturated: a solution containing the maximum amount of solute for a given amount of solvent at a constant temperature and pressure.

Solubility of Ionic Compounds

 Topic 2+ Water molecules have a negative and a positive end.

$\delta+\quad \delta+$

Water Molecules in Solution

+ When certain IONIC COMPOUNDS (compounds made of two or more ions) are added to water, they will break apart, or DISSOCIATE.
+ Examples:
$+\mathrm{NaCl}_{(s)} \rightarrow \mathrm{Na}^{+}{ }_{(\text {aq })}+\mathrm{Cl}_{\text {(aq) }}$
$+\mathrm{CaCl}_{2(s)} \rightarrow \mathrm{Ca}^{+2}{ }_{\text {(aq) }}+2 \mathrm{Cl}_{\text {(aq) }}$
$+\mathrm{AgNO}_{3} \rightarrow$
$+\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow$

Solubility Rules

+ TABLE F
+ Soluble: will dissolve in water
+ Insoluble: will NOT dissolve in water
Table F
Solubility Guidelines for Aqueous Solutions

Ions That Form Soluble Compounds	Exceptions	Ions That Form Insoluble Compounds*	Exceptions
Group 1 ions $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}\right.$, etc.)		carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$	when combined with Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$		chromate $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$	when combined with Group 1 ions, $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$, or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$			
acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right.$or $\mathrm{CH}_{3} \mathrm{COO}^{-}$)		phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$	when combined with Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
hydrogen carbonate $\left(\mathrm{HCO}_{3}^{-}\right)$		sulfide (S^{2-})	when combined with Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
chlorate $\left(\mathrm{ClO}_{3}{ }^{-}\right)$		hydroxide $\left(\mathrm{OH}^{-}\right)$	when combined with Group 1 ions, $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$, or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
halides ($\left.\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right)$	when combined with $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, or $\mathrm{Hg}_{2}{ }^{2+}$		
sulfates $\left(\mathrm{SO}_{4}{ }^{2-}\right)$	when combined with Ag^{+}, $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$, or Pb^{2+}	*compounds having very low solubility in $\mathrm{H}_{2} \mathrm{O}$	

Practice the Solubility Table / Rules

- NaBr

Soluble in water

- $\mathrm{Fe}\left(\mathrm{PO}_{4}\right)$

NOT Soluble in water

- $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$

Soluble in water

- CaSO_{4}

NOT Soluble in water

Solution Concentration

 Topic 3+ Which solution has the higher concentration?
+ Explain how you know, in terms of particles.

Molarity - Concentration Defined

+ Quantitative measurements of solution concentration:
+ Molarity (M)
+ \% Composition by Mass
+ Parts Per Million (ppm)

$$
\text { molarity }=\frac{\text { moles of solute }}{\text { liter of solution }}
$$

- Table T
+ Make sure volume is in LITERS (convert mL into L)
+ If you are given grams, you will need to convert them to moles. Let's review this...

$$
=
$$

\qquad moles $\mathbf{C a C l}_{2}$

Molarity Calculations Practice

+ What is the molarity of a solution in which 58 g of NaCl are dissolved in 2.0 L of solution?
+ What is the molarity of a solution in which 2.5 moles of AgNO_{3} is dissolved in 500 mL of solution?

More Molarity Practice

+ How many grams of KNO_{3} should be used to prepare 2.00 L of a 0.500 M solution?
+ To what volume should 5.0 g of KCl be diluted in order to prepare a 0.25 M solution?

Electrolytes

 Topic 4The Electric Pickle!! Make observations of the pickle.

What is it soaking in?
OBSERVATIONS...
Why do you think this happened?

What is an Electrolyte?

+ electrolytes it must be able to dissolve in water!
+ Forms ions in solution by dissociation
+ (ionic $=$ metal + nonmetal $)$
+ CONDUCT ELECTRICITY....but how?
+ An 'electrolyte' is a substance that 'breaks' into ions when dissolved in water and conducts electricity.
+ They can do this because the ions are mobile!
+ Covalent compounds are never electrolytes; they do not dissociate into ions. When they dissolve, they stay together as molecules

Conductivity

1. There must be CHARGED PARTICLES

+ (ions are an example of a charged particle)

2. The charged particles must be ABLE TO MOVE FREELY

+ (like in a water solution)

Categories of Electrolytes

Electrolytes are classified according to the types of ions formed by the substance when it dissolves.

1. Arrhenius Acid - a substance that dissolves to form H^{+1} ion as the ONLY positive ion in solution. (Look at Table K.)

Electrolyte Categories

2. Arrhenius Base - a substance that dissolves to form $(\mathrm{OH})^{-1}$ ion as the ONLY negative ion in solution. (Look on Table L.)

Electrolyte Categories

3. Salts - a substance that dissolves to form a positive ion other than H^{+1} and a negative ion other than $(\mathrm{OH})^{-1}$

Examples of Electrolytes!

Dissolving in water	Type of Electrolyte	Why?
$\mathrm{HCl}_{(\mathrm{g})} \rightarrow \mathrm{H}^{+1}(\mathrm{aq})+\mathrm{Cl}^{(\mathrm{aq})}{ }^{\text {(}}$	acid	H^{+1} is the only positive ion in solution
$\mathrm{NaOH}_{(\mathrm{s})} \rightarrow \mathrm{Na}^{+1}{ }_{(\mathrm{aq})}+(\mathrm{OH})^{-1}(\mathrm{aq})$	base	$(\mathrm{OH})^{-1}$ is the only negative ion in solution
$\mathrm{K}\left(\mathrm{NO}_{3}\right)_{(\mathrm{s})} \rightarrow \mathrm{K}^{+1}{ }_{(\mathrm{aq})}+\left(\mathrm{NO}_{3}\right)^{-1}(\mathrm{aq})$	salt	Positive and negative ions other than H^{+1} and $(\mathrm{OH})^{-1}$ are present

Regents Practice!!!

Which formula represents a salt?

1. KOH
2. KCl
3. $\mathrm{CH}_{3} \mathrm{OH}$
4. $\mathrm{CH}_{3} \mathrm{COOH}$

Which substance can be classified as an Arrhenius acid?

1. HCl
2. NaCl
3. LiOH
4. KOH

Properties of Acids \& Bases (pH)

 Topic 5

Acid: Dissociate in water to form H^{+1} ions $\left(\mathrm{H}_{3} \mathrm{O}^{+1}\right.$ or hydronium ion).

Base: Dissociate in water to form OH^{-1} (hydroxide ion)

There are different categories of acids and bases depending on how many \mathbf{H}^{+1} or $(\mathbf{O H})^{-1}$ ions are present in solution.

+ pH shows acidity or alkalinity of a solution; a pH of 7 is neutral, a pH of less than 7 is acidic, and a pH of greater than 7 is basic

The pH Scale

IB: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

+ pH is a measure of the concentration of the H^{+}
+ If $\left[\mathrm{H}^{+}\right]$is $1 \times 10^{-1} \mathrm{M}, \mathrm{pH}=$ \qquad
- If $\left[\mathrm{H}^{+}\right]$is $1 \times 10^{-5} \mathrm{M}, \mathrm{pH}=$ \qquad
- If $\left[\mathrm{H}^{+}\right]$is $1 \times 10^{-12} \mathrm{M}, \mathrm{pH}=\mathbf{1 2}$
\qquad

Notice that as the $\left[\mathrm{H}^{+}\right]$decreases, the pH increases (the solution becomes more basic)

Properties of Acids \& Bases (pH)

Indicators

Table M
 Common Acid-Base Indicators

Indicator	Approximate pH Range for Color Change	Color Change
methyl orange	$3.2-4.4$	red to yellow
bromthymol blue	$6.0-7.6$	yellow to blue
phenolphthalein	$8.2-10$	colorless to pink
litmus	$5.5-8.2$	red to blue
bromcresol green	$3.8-5.4$	yellow to blue
thymol blue	$8.0-9.6$	yellow to blue

Exponential Increases in Concentration

- As pH decreases by 1 , the $\left[\mathrm{H}^{+}\right]$concentration increases by 10
+ As pH decreases by 3, the $\left[\mathrm{H}^{+}\right]$concentration increases by $\underline{1000}$

Regents Practice

Which pH will turn methyl orange red?

1. 2.5
2. 3.5
3. 4.4
4. 6.7

Neutralization \& Titrations

Topic 6

+ A neutralization reaction is a type of double replacement reaction. Salt and water are always formed.

For example: $\quad \mathrm{Na}(\mathrm{OH})+\mathrm{H}\left(\mathrm{NO}_{3}\right) \rightarrow \mathrm{Na}\left(\mathrm{NO}_{3}\right)+\mathrm{H}(\mathrm{OH})$ base acid salt water

Neutralization

When an acid reacts with a base, an ionic salt and water are formed.

```
HCl + NaOH }\quad
HBr}+\textrm{KOH}\quad
HNO
H2SO4 + 2 KOH }
2 HNO
```

*A solution is neutral when the $\#$ of $\mathrm{H}_{3} \mathrm{O}^{+}$ions = the $\#$ of OH^{-}ions

Neutralization Example

Example:
 $\underline{\mathbf{2}} \mathrm{HBr}+\underline{\mathbf{1}} \mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \underline{\mathbf{1}} \mathrm{MgBr}_{2}+\underline{\mathbf{2}} \mathrm{H}_{2} \mathrm{O}$

Titration

Online Tutorial

Titration: controlled neutralization (can be seen by a color change)

- Determine unknown concentration

Titrations

In a neutral solution, the moles of $\mathbf{H}^{+}=$moles of $\mathbf{O H}^{-}$

\# moles $=$ Molarity \times Volume ($\#$ moles $=\mathbf{M} \bullet \mathbf{V}$)

Therefore, in a neutral solution: $\mathbf{M}_{A} \mathbf{V}_{A}=\mathbf{M}_{\mathrm{B}} \mathbf{V}_{\mathrm{B}}$

Example:

If 50.0 milliliters of $3.0 \mathrm{M} \mathrm{HNO}_{3}$ completely neutralized 150.0 mL of KOH , what was the molarity of the KOH solution?

