

Topic 1 (Review)

- What does (aq) mean? -- dissolved in water.
- Solution: a homogeneous mixture; solutes dissolved in solvents
- Solute: dissolved particles in a solution (i.e. NaCl)
- Solvent: the dissolving medium in a solution (H₂O)
- Saturated: a solution containing the maximum amount of solute for a given amount of solvent at a constant temperature and pressure.

Solubility of Ionic Compounds Topic 2

Water molecules have a

Water Molecules in Solution

- When certain IONIC COMPOUNDS (compounds made of two or more ions) are added to water, they will break apart, or **DISSOCIATE**.
- Examples: +
 - $\bullet \text{NaCl}_{(s)} \rightarrow \text{Na+}_{(aq)} + \text{Cl-}_{(aq)}$
 - + $CaCl_{2(s)} \rightarrow Ca^{+2}_{(aq)} + 2Cl_{(aq)}$
 - + $AgNO_3 \rightarrow$
 - + Be(NO₃)₂ \rightarrow

Solubility Rules

- + TABLE F
- +

Table F **Solubility Guidelines for Aqueous Solutions**

Ions That Form Soluble Compounds	Exceptions
Group 1 ions (Li ⁺ , Na ⁺ , etc.)	
ammonium (NH_4^+)	
nitrate (NO_3^{-})	
acetate $(C_2H_3O_2^- \text{ or } CH_3COO^-)$	
hydrogen carbonate (HCO ₃ ⁻)	
chlorate (ClO ₃ ⁻)	
halides (Cl [_] , Br [_] , I [_])	when combined with Ag^+ , Pb^{2+} , or Hg_2^{2+}
sulfates (SO_4^{2-})	when combined with Ag ⁺
	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , or Pb ²⁺

• **Soluble:** will dissolve in water **Insoluble:** will **NOT** dissolve in water

I	Ions That Form nsoluble Compounds*	Exceptions
С	earbonate (CO ₃ ² –)	when combined with Group 1 ions or ammonium (NH_4^{+})
	ehromate (CrO ₄ ² –)	when combined with Group 1 ions, Ca ²⁺ , Mg ²⁺ , or ammonium (NH_4^{+})
_ r	ohosphate (PO ₄ ³ –)	when combined with Group 1 ions or ammonium (NH_4^{+})
S	ulfide (S ² –)	when combined with Group 1 ions or ammonium (NH_4^{+})
_ h	ydroxide (OH ⁻)	when combined with Group 1 ions, Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , or ammonium (NH_4^{+})

*compounds having very low solubility in H_2O

Practice the Solubility Table / Rules

• $CaSO_4$

Soluble in water

NOT Soluble in water

Soluble in water

NOT Soluble in water

Solution Concentration Topic 3

- Which solution has the higher concentration?
- Explain how you know, in terms of particles.

Molarity - Concentration Defined

- Quantitative measurements of solution concentration:
 - Molarity (M)
 - % Composition by Mass
 - Parts Per Million (ppm)
- Table T
- Make sure volume is in LITERS (convert mL into L) +
- this...

78.65 g CaCl₂

molarity = moles of solute liter of solution

+ If you are given grams, you will need to convert them to moles. Let's review

moles CaCl₂

Molarity Calculations Practice

 What is the molarity of a solution in L of solution?

 What is the molarity of a solution in in 500 mL of solution?

What is the molarity of a solution in which 58 g of NaCl are dissolved in 2.0

What is the molarity of a solution in which 2.5 moles of AgNO₃ is dissolved

More Molarity Practice

How many grams of KNO₃ should be solution?

To what volume should 5.0 g of KCl solution?

How many grams of KNO₃ should be used to prepare 2.00 L of a 0.500 M

To what volume should 5.0 g of KCI be diluted in order to prepare a 0.25 M

Electrolytes Topic 4

Supports muscle function

The Electric Pickle!!

Make observations of the pickle.

What is it soaking in?

OBSERVATIONS...

Why do you think this happened?

What is an Electrolyte?

- electrolytes it must be able to dissolve in water!
- Forms ions in solution by dissociation
 - (ionic = metal + nonmetal)
- CONDUCT ELECTRICITY....but how?
- water and conducts electricity.
 - They can do this because the ions are mobile!
- When they dissolve, they stay together as **molecules**

An 'electrolyte' is a substance that 'breaks' into ions when dissolved in

Covalent compounds are never electrolytes; they do not dissociate into ions.

1. There must be **CHARGED PARTICLES** (ions are an example of a charged particle) 2. The charged particles must be ABLE TO MOVE FREELY (like in a water solution)

Big ldea

Conductivity

Categories of Electrolytes

Electrolytes are classified according to the types of ions formed by the substance when it dissolves.

1. Arrhenius Acid - a substance that dissolves to form H⁺¹ ion as the ONLY positive ion in solution. (Look at Table K.)

vinegar contains acetic acid

lemons contain vitamin C – ascorbic acid

Electrolyte Categories

negative ion in solution. (Look on Table L.)

Not that kind of base!

2. Arrhenius **Base** - a substance that dissolves to form (OH)⁻¹ ion as the ONLY

Electrolyte Categories

3. Salts - a substance that dissolves to form a positive ion other than H⁺¹ and a negative ion other than (OH)-1

Examples of Electrolytes!

Type of Electrolyte	Why?
acid	H ⁺¹ is the only positive ion in solution
base	(OH) ⁻¹ is the only negative ion in solution
salt	Positive and negative ion other than H ⁺¹ and (OH) ⁻ are present

Regents Practice!!!

Which formula represents a salt? 1. KOH 2. KC1 3. CH_3OH 4. CH_3COOH

Which substance can be classified as an Arrhenius acid? **1.** HCl 2. NaCl 3. LiOH 4. KOH

Properties of Acids & Bases (pH) Topic 5

<u>**Acid</u></u>: Dissociate in water to form H^{+1} ions (H_3O^{+1} or hydronium ion).</u>**

Base: Dissociate in water to form OH-1 (hydroxide ion)

There are different categories of acids and bases depending on how many H^{+1} or (OH)⁻¹ ions are present in solution.

pH shows acidity or alkalinity of a solution; a pH of 7 is neutral, a pH of less than + 7 is acidic, and a pH of greater than 7 is basic

The pH Scale

IB: $pH = -log[H^+]$

- pH is a measure of the concentration of the H⁺
- If [H+] is 1 x 10⁻¹ M, pH = ____
- If [H+] is 1 x 10-5 M, pH = 5
- If [H+] is 1 x 10⁻¹² M, pH = 12

Properties of Acids & Bases (pH) Indicators

Table M Common Acid–Base Indicators

	Approximate	
Indicator	pH Range for Color Change	Color Change
thyl orange	3.2-4.4	red to yellow
mthymol blue	6.0-7.6	yellow to blue
enolphthalein	8.2-10	colorless to pi
nus	5.5-8.2	red to blue
mcresol green	3.8-5.4	yellow to blue
mol blue	8.0-9.6	yellow to blue

Regents Practice

Which pH will turn methyl orange red?

2. 3.5

3. 4.4

4. 6.7

Neutralization & Titrations Topic 6

 A neutralization reaction is a type of <u>double replacement</u> reaction. Salt and water are <u>always</u> formed.

Na(OH) +For example: base

Label these:

 H_2SO_4

+

acid

H(OH) $H(NO_3) \rightarrow Na(NO_3) +$ water acid salt

$2 \text{ NaOH} \rightarrow 2 \text{ HOH} +$ $Na_2(SO_4)$ salt base water

Neutralization

When an acid reacts with a base, an		
HCl + NaOH	\rightarrow	
HBr + KOH	\rightarrow	
HNO ₃ + NaOH	\rightarrow	
$H_2SO4 + 2 KOH$	\rightarrow	
$2 \text{ HNO}_3 + \text{Mg(OH)}_2 \rightarrow$		

ionic salt and water are formed.

*A solution is neutral when the # of H_3O^+ ions = the # of OH^- ions

Neutralization Example

$\underline{2}$ HBr + $\underline{1}$ Mg(OH)₂ \rightarrow $\underline{1}$ MgBr₂ + $\underline{2}$ H₂O

Your Turn \rightarrow

$HNO_3 + KOH \rightarrow$

Titration

•

Online Tutorial

Titration: controlled neutralization (can be seen by a color change)

Determine unknown concentration

**One unit of H^{1+} is required to wipe out (neutralize) one unit of $(OH)^{1-}$.

In a neutral solution, the moles of $H^+ = moles of OH^-$

moles = Molarity x Volume (# moles = M·V)

Therefore, in a neutral solution: $M_A V_A = M_R V_R$

Example:

If 50.0 milliliters of 3.0 M HNO₃ completely neutralized 150.0 mL of KOH, what was the molarity of the KOH solution?

