\qquad

Unit 6 - Topic 6
 Neutralization \& Titration

Neutralization Reactions

When an acid reacts with a base, an ionic salt and water are formed.

$\mathbf{H C l}+\mathrm{NaOH}$	$\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$	
$\mathbf{H B r}+\mathbf{K O H}$	$\mathrm{H}_{2} \mathrm{O}+\mathrm{KBr}$	
$\mathrm{HNO}_{3}+\mathbf{N a O H}$	$\mathrm{H}_{2} \mathrm{O}+\mathrm{NaNO}_{3}$	
$\mathrm{H}_{2} \mathrm{SO} 4+2 \mathrm{KOH}$	$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}$	(note the equation had to be balanced)
$2 \mathrm{HNO}_{3}+\mathbf{M g}(\mathbf{O H})_{2}$	$\mathbf{2 ~} \mathbf{H}_{2} \mathrm{O}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	(note the equation had to be balanced)

A neutral solution is formed when the right number of moles of strong acid reacts with strong base. Neutralization occurs when the concentration of $\mathbf{H}_{3} \mathrm{O}^{+}$ions equals the concentration of OH^{-}ions.

Write the products and balance the equation for each of the following reactions.

$$
\text { Example: } 2 \mathrm{HBr}+1 \mathrm{Mg}(\mathrm{OH})_{2} \rightarrow 1 \mathrm{MgBr}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

1. \qquad $\mathrm{HNO}_{3}+$ \qquad $\mathrm{KOH} \rightarrow$
2. \qquad $\mathrm{H}_{2} \mathrm{SO}_{4}+$ \qquad $\mathrm{NaOH} \rightarrow$
3. \qquad $\mathrm{HCl}+$ \qquad $\mathrm{LiOH} \rightarrow$
4. \qquad $\mathrm{H}_{2} \mathrm{SO}_{4}+$ \qquad $\mathrm{KOH} \rightarrow$ KOH

Name: \qquad

Titration Calculations

Use the titration equation on Table T. Show all of your work using the ESA method (Equation, Substitute with units, Answer with units).

1. How much $6.0 \mathrm{M} \mathrm{HNO}_{3}$ is needed to neutralize 39 mL of 2.0 M KOH ?
2. How much 3.0 M NaOH is needed to neutralize 30.0 mL of $0.75 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
3. What is the concentration of 20 mL of LiOH if it is neutralized by 60 mL of 4 M HCl ?
4. What is the concentration of 60 mL of $\mathrm{H}_{3} \mathrm{PO}_{4}$ if it is neutralized by 225 mL of $2 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?
5. How much 2 M HBr is needed to neutralize 380 mL of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$?

The answers to the questions above are all integers. Each answer stands for a letter of the alphabet. Write the correct letters in the spaces below to find the solution to the riddle.

