

Table

Atomic Models Topic 1

Orbitals are sometimes called electron clouds because they do not have sharp boundaries. Orbitals show where electrons are most likely to be.

Ground vs. Excited State Topic 2

Only

possible excited states!

When writing an excited writing keep it state, keep it simple!

<u>Ground State</u>: most probable electron location (lowest energy level possible).

Excited State: place an electron goes after gaining a specific amount of energy.

Examples of Excited States!

- from the second energy level jumps to the 3rd energy level?
- Ground State:

What happens to the electron configuration of Aluminum if an electron

Pick out the Excited State Configurations

- ≥ 2-8-1 Ground
- Excited ≥ 2-8-1-1
- ≥ 2-7-6 Excited
- Ground ≥ 2-5

excited state to the ground state?

Is energy released when the electron jumps from the ground state to the excited state, OR when the electron falls back down from the FALLS BACK DOWN!

Electromagnetic Spectrum

Electromagnetic spectrum ———

Light Provides Information about Electrons

Normally, if an electron is in a state of lowest possible energy, it is in a ground state. If an electron gains energy, it moves to an excited state.

An electron in an excited state will release a specific quantity of energy as it quickly "falls" back to its ground state.

This energy is emitted as certain wavelengths of light, which give each element a unique line-emission spectrum.

Bright-Line Spectra

The specific set of frequencies of energy emitted by atoms as they return to the ground state produces a unique light, which can be separated into a bright-line spectrum. This can be either an emission spectrum (pictured below) or an absorption spectrum, depending if the gas is hot or cold.

high density hot matter

diffraction grating

Continuous spectrum

Emission spectrum

Absorption spectrum

Other Bright-Line Spectra

Every element has its own unique spectrum, and could be thought of as the "fingerprint" of that element. A spectrum of samples of unknown composition can be observed in order to identify the elements present.

Mercury

Sodium

Hydrogen

Helium

Neon

1.7 1.8 1.9 2.0 1. 2.2 2.4 2.6 2.8 3.0 3.2 3.4 700 600 500 400

So what???

Much of what we know about the structure and history of the universe has been figured out by observing the spectra of stars. We know what gases are present in distant stars and galaxies by splitting the light they produce into spectra, and using the elements' fingerprints to identify them.

Check for Understanding - How all this Works!!

- As electrons go from ground state to excited state, they must <u>Absorb</u> (absorb or release) energy.
- This process is ______ Endothermic _____ (endo- or exothermic). The opposite is true Emit (emit or absorb) energy.
- Since this results in the electron (atom) giving up energy, it is some color of Light
- If examined through a spectroscope, the element's characteristic _____ line spectrum will be observed, and may serve to identify the element.

as electrons "de-excite" or relax back to the ground state. They must give up or

Exothermic (endo- or exothermic). The energy is observed as

Bright

Regents Practice #1

when the energy of the electron (1) decreases (2) increases (3) remains the same

An electron in an atom moves from the ground state to an excited state

Regents Practice #2

Base your answers to these questions on the diagram to the right, which represents an atom of magnesium-26 in the ground state.

What is the total number of valence electrons in an atom of Mg-26 in the ground state?

2 There are (2-8-2) = 12 TOTAL electrons

Regents Practice #3

On the diagram below, write an appropriate number of electrons in each shell to represent a Mg-26 atom in an excited state. Your answer may include additional shells. (Many possible answers.)

Weighted Atomic Mass & Allotropes Topic 3

Weighted Atomic Mass

- # Protons: determine which element an atoms is = ATOMIC NUMBER
- # electrons: determine the charge on an atom
- Protons = electrons: atoms are neutral
- Protons > electrons: ION (cation), positively charged (lost electrons)
- Protons < electrons: ION (anion), negatively charged (gained)</p> electrons)
- # neutrons: determines the mass number of an atom (protons + neutrons).

Weighted Atomic Mass

- Mass Number = protons + neutrons for an individual atom. It's a WHOLE number.
- Atomic mass = weighted average of mass of all naturally occurring
- of neutrons.
- NOTE: All atoms of an element are isotopes of that element.

isotopes of an element. This is the DECIMAL on the periodic table.

Isotopes = 2 atoms of the same element having the different number

Weighted Atomic Mass

Look at your periodic tables ... carbon's atomic mass is 12.011 u (mass) units). SO, what is the mass of carbon's most abundant isotope? (Yes, we did learn this earlier this year!)

Closest to 12, so C-12 is the most abundant

Abundant means LOTS

Most elements have 1, 2, or 3 naturally occurring isotopes. This means that in any sample of the element, these naturally occurring isotopes are all present typically always in the same % ratio.

Isotope Example

- C-12: 6 protons, 6 neutrons (90% abundance)
- C-13: 6 protons, 7 neutrons (9% abundance)
- C-14: 6 protons, 8 neutrons (1% abundance)
- be carbon-13, and 1% will be carbon-14.

% abundance of naturally occurring isotopes means that in a sample of carbon (like a lump of coal or a diamond) 90% of the carbon atoms will be carbon-12, 9% will

Since not all the atoms in a sample of an element have the same mass, we have to calculate an average atomic mass for the element. The average atomic mass is calculated taking into account the different percents of each isotope present.

Average Atomic Mass Example

Here's the equation (it's NOT in Table T!!)

Let's calculate the atomic mass of carbon!

Atomic mass = (% isotope 1 x mass isotope 1) + (% isotope 2 x mass Isotope 2) + (% isotope 3 x mass Isotope 3) 100

Allotropes

same element, different structure, different formula.

Only a few elements exist like this.

- Carbon
- Oxygen
- Sulfur
- Phosphorus

What does this word sound like? Why do you think many people get this confused?

Allotropes: When elements exist in 2 or more different forms. Same atoms,

Oxygen

Sulfur & Phosphorus

Sulfur S₈

White Phosphorus

Black Phosphorus

Regents Practice

The weighted atomic mass of a substance is

1. the most abundant isotope 2 The average of all naturally occuring isotopes 3. The atomic number of an element

4. Always the same as the number of protons plus neutrons

Trends of the Periodic Table Topic 4

- Take out your <u>Periodic Table</u> ... What happens to:
- # of valence electrons as you go left to right across a period?
- # of valence electrons as you go down a group?
- # of energy levels as you go left to right across a period?
- # of energy levels as you go down a group?
- Atomic radius (size) as you go left to right across a period? (Table S)
- Atomic radius (size) as you down a group? (Table S)
- Metallic character as you go left to right across a period?
- Metallic character as you go down a group?

Periodic Table of the Elements KEY 12.011 Selected Oxidation States Atomic Mass -> +2 Symbol Relative atomic masses are based +4 Group on ${}^{12}C = 12$ (exact) 13 Note: Numbers in parentheses 9.01218 10.81 +31 are mass numbers of the most

Period

1.00794

Atomic Number	Symbol	Name	First Ionization Energy (kJ/mol)	Electro- negativity	Melting Point (K)	Boiling* Point (K)	Density** (g/cm ³)	A F
1	Η	hydrogen	1312	2.2	14	20.	0.000082	
2	He	helium	2372			4	0.000164	
3	Li	lithium	520.	1.0	454	1615	0.534	
4	Be	beryllium	900.	1.6	1560.	2744	1.85	
5	В	boron	801	2.0	2348	4273	2.34	
6	С	carbon	1086	2.6				
7	Ν	nitrogen	1402	3.0	63	77	0.001145	
8	Ο	oxygen	1314	3.4	54	90.	0.001308	
9	\mathbf{F}	fluorine	1681	4.0	53	85	0.001553	
10	Ne	neon	2081		24	27	0.000825	
11	Na	sodium	496	0.9	371	1156	0.97	
12	Mg	magnesium	738	1.3	923	1363	1.74	
13	Al	aluminum	578	1.6	933	2792	2.70	
14	Si	silicon	787	1.9	1687	3538	2.3296	
15	Р	phosphorus (white	e) 1012	2.2	317	554	1.823	
16	S	sulfur (monoclinic) 1000.	2.6	388	718	2.00	
17	\mathbf{Cl}	chlorine	1251	3.2	172	239	0.002898	
18	Ar	argon	1521		84	87	0.001633	
19	Κ	potassium	419	0.8	337	1032	0.89	
20	Ca	calcium	590.	1.0	1115	1757	1.54	

Atomic Radius: the "Falling Snowman"

ELECTRONEGATIVITY

- Force of attraction the atom has for an electron. "Desire" for electrons.
- Which do you think would have greater electronegativity; metals or nonmetals? Nonmetals Why??
- Why?

Fluorine only wants 1 e-, so strong desire, and small so valence shell close to pull of electrons

Look at Table S. Which element has the highest electronegativity?

Ionization Energy

- the harder to remove.)
- Which do you think would have higher ionization energy; metals or nonmetals? Nonmetals Why??
- Which element has the highest ionization energy? <u>He</u>

• Why??

Full shell, small size, so e- close to nucleus & held tightly. **VERY STABLE**

• the amount of energy needed to remove an electron from the atom. (The more energy,

Metallic Character

- Describes how readily an atom will ______ ion.
- Let's refresh our memory about the properties of metals vs. nonmetals...

Metals

 conduct electricity shiny, reflective luster • malleable •want to lose electrons

lose electrons to become an

- •do not conduct
- •dull or pearly / no luster
- •brittle
- •want to gain electrons

Metallic Character Trends

right across a period.

Based on what you already know about the periodic table, identify the trend in metallic character as you go down a group and from left to

INCREASING METALLIC CHARACTER

													1	
									5 B Base	6 C Carbon	7 N National	8 O Ouypen	9 F Parter	
									10.811	12.0107	14.00674	15.9994	18.9984032	É
									Al 26.981538	Si 58-cm 28-0855	P Phosphores 30.973761	Salter 32.066	Cl Otorae 35.4527	
22	23	. 24	25	26	27	28	29	30	31	32	33	34	35	-
Ti Thankar 47,867	V Vansdom 50.9415	Cr Chromient 51,9961	Mn Manganose 54.938049	Fe bat 55.845	Co Cituk 58,933200	Ni Staut 58.4934	Cu Copper 63,546	Zn 65.39	Ga Gathan 69.723	Germanians 72,61	As Anone 24.92160	Selement T8.96	Br teomac 79.904	
40	41	42	43	44	45	46	47	48	49	50	51	52	53	7
Zr 91.224	Nb Notium 92.90638	Mo Mohdenam	Tc Technorium (98)	Ru Ratheniaro 101.07	Rhodians 102,90550	Pd Foliaduae 105.42	Ag 58007 107.8682	Cd Catinum 112.411	In Infan 114.818	Sn 118,710	Sb Antimetry 121,760	Te Tellatan 127.60	I Isdae 126,90447	
72	73	74	75	76	77	78	79	80	81	82	83	84	85	
Haffmann 178.49	Ta Taribas 180,9479	W Isighten 183.84	Re Recision	Os	Ir indem 192.217	Pterioue 195,078	Au 195.96655	Hg Menney 200.59	TI Tatkan 204,3833	Pb Lead 207.2	Bi Bionado 208.98038	Po (209)	At Amine (210)	
104	105	106	107	108	109	110	111	112	113	114		8. Sec. 3.	126859	
Rf (261)	Db Datasian (262)	Seaborycan (263)	Bh flohrien (202)	Hs Hanium (265)	Mt Statucious (266)	(269)	(272)	(277)				s		

Reactivity - Metals

- easily.
- So, which element is the MOST reactive METAL? <u>Fr</u> Why?
 - wants to lose it.
 - nucleus.

For METALS, they are more reactive if they <u>lose</u> electrons

Group 1: only wants to lose 1 e- to become stable. REALLY

Largest group 1, so e- to lose is farthest away from pull of the

Reactivity - Nonmetals

- easily.
- So, which element is the MOST reactive NONMETAL? \underline{F} Why?
 - Halogen, only needs 1 e- to become stable so it REALLY wants one.
 - <u>Smallest halogen, so e- to gain is closest to the pull of the</u> positively charged nucleus.

For NONMETALS, they are more reactive if they gain electrons

Ionization energy

Atomic radius

Atomic radius

onization

Compared to atoms of metals, atoms of nonmetals generally Have lower first ionization energies A)

Conduct electricity more readily B)

Have higher electronegativities

D) Lose electrons more readily

Atoms of which element have the greatest tendency to gain electrons'

