

Unit 6

 KineticsDynamic Equilibrium, Position of Equilibrium, Liquid-Vapor Equilibrium, Equilibrium Law

7.1 Equilibrium Review

What is equilibrium?

* the rate of the forward reaction is equal to the rate of the reverse reaction

Features of equilibrium

* It is dynamic
* It occurs in a closed system
* Concentrations of products and reactants remain CONSTANT
* There is no change in properties (color/density - dependent on concentration)
* Can be reached from either direction

The Position of Equilibrium

* Measured by the equilibrium constant $\left(K_{c}\right)$
* Example: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HI}_{(\mathrm{g})}$
*When finding the K_{c} - the equilibrium constant is equal to the concentration of the products, divided by the concentration of the reactants

In General
 $\mathrm{a} \mathrm{A}+\mathrm{bB} \rightleftharpoons c \mathrm{C}+d \mathrm{D}$

$$
\frac{[\mathrm{C}]_{\mathrm{eqm}}^{c}[\mathrm{D}]_{\mathrm{eqm}}^{d}}{[\mathrm{~A}]_{\mathrm{eqm}}^{a}[\mathrm{~B}]_{\mathrm{eqm}}^{b}}=K_{\mathrm{c}}
$$

- The equilibrium constant expression has the concentrations of products in the numerator and the concentrations of reactants in the denominator.
- Each concentration is raised to the power of its coefficient in the balanced equation. (Where it is equal to one it does not have to be given.)
- Where there is more than one reactant or product the terms are multiplied together.

Back to our Example:

* $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HI}_{(\mathrm{g})}$
* $[\mathrm{HI}]^{2} /\left(\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]\right)$
(a)

(b)

Another Example. This Time You Try!

* Find the equilibrium expression for the following reaction:
$* \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{NH}_{3(\mathrm{aq})} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}{ }_{(\mathrm{aq})}$

Magnitude of K_{c}

* Think basic division...
* If your reaction produces a lot of products and leaves very little reactants behind, will K_{c} be a high or low value?
- If your reaction does not produce much product and it stays in the reactant form, what will happen to K_{c} ?

Equilibrium lies
to the left in
favour of reactants

Equilibrium lies
to the right in favour of products

Magnitude of K_{c}

* $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{(\mathrm{g})} \quad \mathrm{K}_{\mathrm{c}}=2$
* $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HBr}_{(\mathrm{g})} \quad \mathrm{K}_{\mathrm{c}}=10^{10}$
* $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HCl}_{(\mathrm{g})} \quad \mathrm{K}_{\mathrm{c}}=10^{18}$
- If $\mathrm{K}_{\mathrm{c}} \gg 1$, the reaction is said to go to completion (very high conversion of reactants to products)
* If $\mathrm{K}_{\mathrm{c}} \ll 1$, the reaction hardly proceeds.
* The magnitude of K_{c} does NOT tell you how fast the reaction reaches equilibrium

Reaction Quotient (Q)

- If we look at the concentrations of a reaction at a non-equilibrium point in time, we get information about the K_{c}.
* The value of Q changes in the direction of K_{c}, enabling us to predict the direction the reaction will proceed.
* $\mathrm{Q}=\mathrm{K}_{\mathrm{c}}$ (reaction at equilibrium, no net reaction occurs)
* $\mathrm{Q}<\mathrm{K}_{\mathrm{c}}$ (reaction proceed to the right in favor of the products)
* $\mathrm{Q}>\mathrm{K}_{\mathrm{c}}$ (reaction proceeds to the left in favor of reactants)

Reaction Quotient (Q)
 * $\mathrm{K}_{\mathrm{c}}=49.5 @ 440^{\circ} \mathrm{C}$

Experiment I: concentration at time $t / \mathrm{mol} \mathrm{dm}^{-3}$	Experiment II: concentration at time $t / \mathrm{mol} \mathrm{dm}^{-3}$	
H_{2}	0.0500	0.0250
I_{2}	0.0500	0.0350
HI	0.100	0.300

$$
\text { The equilibrium constant expression }=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Experiment I, time $t \quad Q=\frac{(0.100)^{2}}{(0.0500)(0.0500)}=4.00 \quad: Q<K_{c}$ (will shift to the right)

Experiment II, time t

$$
Q=\frac{(0.300)^{2}}{(0.0250)(0.0350)}=103
$$

* $\mathrm{Q}>\mathrm{K}_{\mathrm{c}}$ (will shift to the left)

Another Example

The equilibrium constant $\mathrm{K}_{\mathrm{c}}=1.7 \times 10^{2}$ at 500 K for the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Determine whether the reaction mixture is at equilibrium when the concentrations of the components at this temperature are as follows:

$$
\begin{aligned}
& {\left[\mathrm{N}_{2}\right]=1.50} \\
& {\left[\mathrm{H}_{2}\right]=1.00} \\
& {\left[\mathrm{NH}_{3}\right]=8.00}
\end{aligned}
$$

If it is not at equilibrium, state and explain in which direction the reaction will proceed.

Disruption of Equilibrium...

*Who do we need to consider when an equilibrium shifts?

* Le Chatelier's Principle
* a system at equilibrium when subjected to a change will respond in such a way as to minimize the change

Change in Concentration

*The classical Le Chatelier's example:
$* \mathrm{~N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(g)}$

* Adding a reactant will cause a shift towards the products (making more ammonia), while using up some of the other reactant
* Removing a product will cause a shift toward the products, using up reactants in the process

Changes in Pressure

* An increase in pressure of a system, favours the side with the fewer number of gas particles
* A decrease in pressure will favour the side with more gas particles
* $\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$ - which way will it shift with an increase?

Pressure and Concentration

*Changes in Pressure and Concentration will cause a different position of equilibrium to be established
*BUT!...the K_{c} will not change

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Changes in Temperature

* Dependent on $\Delta \mathrm{H}$: Does the reaction release or absorb energy?
$\cdot 2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \quad \Delta \mathrm{H}=-24 \mathrm{~kJ} / \mathrm{mol}$
brown colorless

Changes in Temperature

$* \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NO}_{(\mathrm{g})} \quad \Delta \mathrm{H}=+181 \mathrm{~kJ} / \mathrm{mol}$
*What happens with an increase in temperature here?

* Unlike changes in pressure and concentration, if the temperature is changed in an equilibrium there will be a change in the K_{c} value

	ΔH	T	$\mathrm{~K}_{\mathrm{c}}$
exothermic	negative	increase	\downarrow
		decrease	\uparrow
endothermic	positive	increase	\uparrow
		decrease	\downarrow

Addition of a Catalyst

- What does a catalyst do in a reaction?
* provides an alternate reaction pathway

Since the catalyst decreases the activation energy for both the forward and reverse reaction, it will have no effect on the position of equilibrium. Therefore, K_{c} will not change.

Summary

| Effect of \ldots | | | Change in position of equilibrium |
| :--- | :--- | :--- | :--- | Change in value of K_{c}

Industrial Applications

*What aspects are important to creating a product in the manufacturing field?

* Yield - how much you make
- Rate - how long it takes to complete
* It would be really nice if you were able to get a 95% yield all the time for your manufacturing process, but if it took you several years to do it...would it be worth it?

The Haber Process

- $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
*What information can you gather from this equation?
* All products and reactants are gases, fewer molecules on product side of the reaction
* Forward reaction is exothermic, reverse is endothermic

Applying Le Chatelier's to the Haber Process

Concentration: Increase concentration of $\mathrm{H}_{2} \& \mathrm{~N}_{2}$ collect NH_{3} as it is made
Pressure: Increase Pressure ($2 \times 10^{7} \mathrm{~Pa}$)
Temperature: Favored by lower temperature, but too slow and it becomes uneconomical $\left(450^{\circ} \mathrm{C}\right.$ is used)

Catalyst: Doesn't effect position of equilibrium, but can force the reaction to occur more quickly (finely divided iron, nowadays Ruthenium (Ru) because of decreased energy requirements).

Testing Hint...

When discussing the Haber process, focus on the REASONS for choosing the conditions explained using concepts of equilibrium AND kinetics

The Contact Process -

Formation of Sulfuric Acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$

* $\mathrm{H}_{2} \mathrm{SO}_{4}$ - 250 million tons are manufactured every year
* Contact Process (due to 'contact' with $\mathrm{V}_{2} \mathrm{O}_{5}$ catalyst)
- 3 simple reactions
* combustion of sulfur: $\mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})}$
* Oxidation of sulfur dioxide: $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{SO}_{3(\mathrm{~g})}$
* Combination of $\mathrm{SO}_{3(g)}$) with water (really violent reaction, substitute is below)

$$
* \mathrm{SO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{SO}_{4(l)} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}
$$

Continued

* It has been determined that the second step is the rate determining step. If Le Chatelier's is applied to that step, we can maximize yield

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{SO}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-196 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

*What can be done to increase the yield of this reaction?

Detergents
Paint \& Pigments
31\%

Fibers, Rayon \& Paper
Plastics
Car Batteries, Electroplating, Explosives, Dyes, Pesticides
Fertilizers

17.1 The Equilibrium Law

* Le Chatelier's Principle
*Equilibrium Position in Relation to Entropy and Gibbs Free Energy
* $\Delta \mathrm{G}=-R \mathrm{~T} \operatorname{In} \mathrm{~K}$

Example

* Hydrogen can be prepared by the combination of carbon monoxide and water @ $500^{\circ} \mathrm{C}$. At equilibrium, the concentrations in the reaction mixture were found to be:
* CO $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$
* $\mathrm{H}_{2} \mathrm{O} \quad 0.0145 \mathrm{~mol} \mathrm{dm}^{-3}$
* $\mathrm{H}_{2} \quad 0.200 \mathrm{~mol} \mathrm{dm}^{-3}$
- $\mathrm{CO}_{2} \quad 0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$
- What is a good place to start?

Method for Solving - (R)ICE

Sometimes, you may only get data on the initial condition and some small piece of data on the equilibrium

1. (Reaction) Write the balanced equation.
2. Write values for each of the concentrations for initial, change and equilibrium. (Can create a table for this.)

* Initial - what was originally in the flask (assume [product] $=0$ unless stated otherwise)
* Change - represents the amount that reacts to reach equilibrium (subtract reactants, add products - as same ratio in the reaction)
* Equilibrium - can be calculated ([equilibrium] $=$ [initial] +/- the change)

3. Write the expression for K_{c} from the balanced equation and substitute.

ICE Example

* A Student placed 0.20 mol of $\mathrm{PCl}_{3(\mathrm{~g})}$ and 0.10 mol of $\mathrm{Cl}_{2(\mathrm{~g})}$ in a $1 \mathrm{dm}^{3}$ flask at $350^{\circ} \mathrm{C}$. The reaction, which produced $\mathrm{PCl}_{5(\mathrm{~g})}$, was allowed to come to equilibrium at which time it was found that the flask contained 0.12 mol of $\mathrm{PCl}_{3(\mathrm{~g})}$. What is the value of K_{c} in this reaction?

Another ICE Example

* The oxidation of NO to form NO_{2} occurs during the formation of smog. When 0.60 mol of NO was reacted with $0.60 \mathrm{~mol} \mathrm{O}_{2}$ in a $2 \mathrm{dm}^{3}$ container at $500^{\circ} \mathrm{C}$, the equilibrium mixture was found to contain 0.20 mol of NO_{2}. Calculate the equilibrium constant for the reaction at this temperature.

Calculating Concentrations from the Equilibrium constant

*The reaction $\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$ has a $\mathrm{K}_{\mathrm{c}}=0.500$ at 350 K . If the concentrations at equilibrium are:

* $[\mathrm{CO}]=0.200 \mathrm{~mol} \mathrm{dm}^{-3}$
* $\left[\mathrm{H}_{2}\right]=0.155 \mathrm{~mol} \mathrm{dm}^{-3}$
*What is the equilibrium concentration of $\mathrm{CH}_{3} \mathrm{OH}$?

Another Example

* It gets more challenging if we need to calculate equilibrium concentrations given the K_{c} and initial concentrations.
* The equilibrium constant, K_{c}, for the reaction

$$
\mathrm{SO}_{3(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})} \rightleftarrows \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{SO}_{2(\mathrm{~g})}
$$

was found to be 6.78 at 400 K . If the initial concentrations of NO and SO_{3} were both $0.03 \mathrm{~mol} \mathrm{dm}^{-3}$, what would be the equilibrium concentration of each component?

What Happens When K_{c} is Very Small?

*What happens to the concentrations of the reactants and products? (Basically, which way is the reaction favoring?)
*The change in concentration of the reactants is very small (close to zero)
$\therefore[\text { reactant }]_{\text {jnitial }}=[\text { reactant }]_{\text {equilibrium }}$

K_{c} is Very Small Example

* The thermal decomposition of water has a very small value of K_{c}. At $1000^{\circ} \mathrm{C}$, $\mathrm{K}_{\mathrm{c}}=7.3 \times 10^{-18}$ for the reaction:
- $2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftarrows 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$

> Use the approximation if $\mathrm{K}_{\mathrm{c}}<10^{-3}$ then we ignore the change when calculating.

* A reaction is set up at this temperature with an initial water concentration of 0.10 $\mathrm{mol} \mathrm{dm}{ }^{-3}$. Calculate $\left[\mathrm{H}_{2}\right]$ at equilibrium.

Free Energy and Equilibrium

What determines whether a reaction goes to completion or not?
$\Delta G^{\ominus}=$ negative \Rightarrow reaction proceeds in the forward direction $\Delta G^{\ominus}=$ positive \Rightarrow reaction proceeds in the backward direction $\Delta G^{\ominus}=0 \Rightarrow$ reaction is at equilibrium

$$
\begin{aligned}
& \Delta \mathrm{G}^{\circ}=\mathrm{G}_{\text {products }}^{\circ}-\mathrm{G}_{\text {reactants }}^{\circ} \\
& \mathrm{G}_{\text {products }}^{\circ}=\mathrm{G}_{\text {reactants }}^{\circ} @ \text { equilibrium }
\end{aligned}
$$

(a)

K_{c} from Thermodynamic Data

$$
\Delta G^{\circ}=-R T \ln K
$$

Given in data booklet:
$\Delta \mathrm{G}^{\circ}=$ standard free energy change of the reaction
$R=$ gas constant ($8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
$T=$ absolute temperature (Kelvin)
InK = the natural logarithm of K_{c}

ΔG^{\ominus}	$\ln K$	K	Equilibrium mixture
ΔG^{\ominus} negative	In K positive	$K>1$	mainly products
ΔG^{\ominus} positive	In K negative	$K<1$	mainly reactants
$\Delta G^{\ominus}=0$	In $K=0$	$K=1$	appreciable amounts of both reactants and products

Example

The esterification reaction that produces ethyl ethanoate has a free energy change ($\Delta \mathrm{G}^{0}=-4.38 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$). Calculate the value of the equilibrium constant of this reaction at 298 K .

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq)}}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(\mathrm{aq)}} \rightleftarrows \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}
$$

Kinetics and Equilibrium

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

* $K_{c}=10^{261}$!!!!
* Meaning $\triangle \mathrm{G}$ should be large and negative.
* The reaction should go to completion.
* However, we know rusting is a SLOW process.

Magnitude of K_{c} gives no information on rate!

So....let's look at k for the forward and reverse reactions

Continued

$$
A+B \rightleftarrows C+D
$$

Rate of forward reaction $=k[A][B]$
Rate of reverse reaction $=k^{\prime}[C][D]$

$$
k[A][B]=k^{\prime}[C][D]
$$

Rearrange to give $K_{c}=k / k^{\prime}$

Therefore:

If $k \gg k^{\prime}=>K_{c}$ is large and the reaction progresses towards completion.
If $k \ll k^{\prime}=>K_{c}$ is small and the reaction barely takes place

Finally: Responses of Equilibrium

Concentration:

- Increasing [reactant] increases rate of forward rxn and shifts equilibrium to the right.
- Increasing [product] increases rate of reverse rxn and shifts equilibrium to the left.
- VALUE of K_{c} remains constant.

Catalyst:

- Increases values of k and k^{\prime} by the same factor. $\underline{K_{c}}$ not affected.

Temperature:

- Arrhenius equation; rate constant increases with increasing temp. Forward and backward reactions affected differently by temp. k / k ' is temperature dependent. K_{c} increases with temp.

