Unit 7 - IB Atomic Structure & Periodic Table

SOLVAY CONFERENCE 1927

colourized by pathncolour.

Quantum Mechanical Model

Each orbital can only hold
<u>2</u> electrons, each with
opposite <u>spins</u>

Pauli Exclusion Principle

Electron "Cloud"

Nucleus

Note: Not to Scale!

Electron Sub-Energy Levels (s-orbital)

Electrons fill orbitals lowest energy first

spherical in shape and holds only 2 e⁻ total.

p-Orbital

 (x, y, z) are dumbbell shaped
 Each holds 2 e⁻
 hold up to 6 e⁻ total

d-Orbitals

 4-leaf clover shaped
 5 types of d-orbitals; each holding 2 electrons
 total of 10 e-'s

Sub-shells (s, p, d) are most stable when they are <u>half full</u> or <u>completely</u> <u>filled</u> with electrons.

Electrons fill orbitals one electron at a time (because they repel)

All seats get filled with one person each first, then they double up.

Electron Configuration Continued Example: 1s² ≥ 1 = energy level, s = orbital type, 2 = # of e⁻ are in it. Writing electron configuration: go from left to right across periods of the periodic table, write all symbols from each 'block' (s, p, d, or f) $large Li = 1s^22s^1$ $Na = 1s^22s^22p^63s^1$ $Ti = 1s^22s^22p^63s^23p^64s^23d^2$

Aufbau Principle

Aufbau is the German word for 'building up'.

Electrons fill orbitals that have the lowest energy first.

Energy

Another Approach n=6 6p 6d <u>6s</u> electron configuration as Can also draw levels with arrows to represent electrons. n=4 41 electrons) Ex: sodium <u>3p</u> <u>1 28 11 11</u> 270 ≥ 1s <u>n=</u>2 n=1 $\ell = 0$ $\ell = 1$ $\ell = 2$ $\ell = 3$

Coulomb's Law

The force of attraction or repulsion (F) between 2 particles is dependent on the product of the charges of the particles (Q_1 and Q_2) divided by the distance between the two particles (r) squared. *(k is a constant dependent on the nature of the particles.)

Isoelectronic: Same # of electrons Noble Gas orbital notation: [Ne]3s¹ Effective Nuclear Charge: Coulomb's Law, practical applications

Extras!

Effective Nuclear Charge

- Nuclear Charge: Given by the atomic number and increases by one as you go across a period.
- Outer electrons do not feel all of this attractive force because they are 'shielded' by the inner electrons.
- Therefore, the 'effective' charge the outer electrons feel is less than the nuclear charge (# of protons).
- Let's look at an example...

Effective Nuclear Charge

Consider, for example, a sodium atom. The nuclear charge is given by the atomic number of element (Z = 11). The outer electron in the 3s orbital is, however, shielded from these 11 protons by the 10 electrons in the first and second principal energy levels (1s²2s²2p⁶).

Element	Na	Mg	A	Si
Nuclear Charge	11	12	13	14
Electron Configuration	[Ne]3s ¹	[Ne]3s ²	[Ne]3s ² 3p ¹	[Ne]3s ² 3p ²
Effective Nuclear Charge	+1	+2	+3	+4
Atomic Radius	160	140	124	114

