Quantum Mechanical Model

* Each orbital can only hold

2 electrons, each with opposite spins
Pauli Exclusion Principle

Electron "Cloud"
\section*{Nucleus}

Note: Not to Scale!

Electron Sub-Energy Levels (s-orbital)
Electrons fill orbitals
lowest energy first
spherical in shape

Electrons fill orbitals
lowest energy first
spherical in shape
and holds only 2 e- $^{\text {and }}$
total. Electron Sub-Energy Levels (s-orbit
Electrons fill orbitals
lowest energy first
spherical in shape
and holds only 2 e- $^{\text {total. }}$
tor
 Election Sup-energy Levels (S-orbition
Electrons fill orbitals
lowest energy first
spherical in shape
and holds only $2 \mathrm{e}^{-}$
total. Electrons fill orbitals
lowest energy first
spherical in shape
and holds only $2 \mathrm{e}^{-}$
total. Lection Ser es $\begin{aligned} & \text { Electrons fill orbitals } \\ & \text { lowest energy first } \\ & \text { spherical in shape } \\ & \text { and holds only } 2 e^{-}\end{aligned}$ Electrons fill orbitals
lowest energy first
spherical in shape
and holds only $2 \mathrm{e}^{-}$
total. Electrons fill orbitals
lowest energy first
spherical in shape
and holds only $2 \mathrm{e}^{-}$
total. Electrons fill orbitals
lowest energy first
spherical in shape
and holds only $2 \mathrm{e}^{-}$
total.
Electron Suo-Energy Levels (s-oroit
Electrons fill orbitals
lowest energy first
spherical in shape
and holds only $2 \mathrm{e}-$
total.
$\begin{aligned} & \text { Electrons fill orbitals } \\ & \text { lowest energy first } \\ & \text { spherical in shape } \\ & \text { and holds only } 2 e^{-}\end{aligned}$
 Electrons fill orbitals
lowest energy first
spherical in shape
and holds only $2 e^{-}$

total. | Electrons fill orbitals |
| :---: |
| lowest energy first |
| spherical in shape |
| and holds only $2 \mathrm{e}-$ |
| total. | Electrons fill orbitals

lowest energy first
spherical in shape
and holds only $2 \mathrm{e}^{-}$
total.
-
\square
 8 E
\qquad
\qquad Electrons fill orbitals
lowest energy first
spherical in shape
and holds only $2 e^{-}$
total. $\begin{aligned} & \text { Electrons fill orbitals } \\ & \text { lowest energy first } \\ & \text { spherical in shape } \\ & \text { and holds only } 2 e^{-}\end{aligned}$
\qquad
n er
\qquad
-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\square
$-$
\qquad
\qquad
\qquad

p-Orbital

* (x, y, z) are dumbbell shaped
- Each holds $2 \mathrm{e}^{-}$
© hold up to 6 e- total

d-Orbitals

8-leaf clover shaped

* 5 types of d-orbitals; each holding 2 electrons
total of $10 e^{-\prime} \mathrm{s}$

Hund's Rule!

* Sub-shells (s, p, d) are most stable when they are half full or completely filled with electrons.

Electrons fill orbitals one electron at a time (because they repel)

- All seats get filled with one person each first, then they double up.

Electron Configuration Continued

Example: 1s²

* 1 = energy level, s = orbital type, 2 = \# of e- are in it.
- Writing electron configuration: go from left to right across periods of the periodic table, write all symbols from each 'block' (s, p, d, or f)
* $\mathrm{Li}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1}$
- $\mathrm{Na}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{1}$

Ti $=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$

Auflbau Principle

- Aufbau is the German word for 'building up'.
* Electrons fill orbitals that have the lowest energy first.

Another Approach

- Can also 'draw' electron configuration as levels with arrows to represent electrons.

Ex: sodium (11 electrons)

Start here and move along
the arrows one by one.

Let's try some other examples

Start here and move along
the arrows one by one.
the arrows one by one.

- Nitrogen

Oxygen

- Magnesium

Bromine

* Iron

Bromine

Coulomb's Law

The force of attraction or repulsion (F) between 2 particles is dependent on the product of the charges of the particles $\left(\mathrm{O}_{1}\right.$ and $\left.\mathrm{O}_{2}\right)$ divided by the distance between the two particles (r) squared. *(k is a constant dependent on the nature of the particles.)

Extras!

- Isoelectronic: Same \# of electrons

Noble Gas orbital notation: [Ne]3s ${ }^{1}$
Effective Nuclear Charge: Coulomb's Law, practical applications

Effective Nuclear Charge

Nuclear Charge: Given by the atomic number and increases by one as you go across a period.

* Outer electrons do not feel all of this attractive force because they are 'shielded' by the inner electrons.
*Therefore, the 'effective' charge the outer electrons feel is less than the nuclear charge (\# of protons).

Let's look at an example...

Effective Nuclear Charge

\Rightarrow Consider, for example, a sodium atom. The nuclear charge is given by the atomic number of element $(Z=11)$. The outer electron in the 3 s orbital is, however, shielded from these 11 protons by the 10 electrons in the first and second principal energy levels ($1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6}$).

Element	Na	$\mathbf{M g}$	Al	Si
Nuclear Charge	11	12	13	14
Electron Configuration	$[\mathrm{Ne}] 3 \mathrm{~s}^{1}$	$[\mathrm{Ne}] 3 \mathrm{~s}^{2}$	$[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{1}$	$[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$
Effective Nuclear Charge	+1	+2	+3	+4
Atomic Radius	160	140	124	114

