

ACIDS \& BASES

Unit 8
Theories, Properties, $\mathrm{pH}, \mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}, \mathrm{K}_{\mathrm{w}}$, Buffers, Neutralizations, Titrations, Indicators

IN THE FUTURE...

- IAs are coming...things to remember
- MUST be individual - NO shared work!
- Follow the rubric and answer ALL questions associated with the lab
- Explanations for what you are doing are helpful
- When you take a measurement - write down every digit you know absolutely and ESTIMATE a final digit - the thermometers went to the nearest whole number - you should have measured to the nearest tenth (whatever the scale is broken down to plus one more number)

ARRHENIUS

- acid - substances that dissolves in water to form H^{+}
- base - substances that dissolves in water to form OH-
- very limited theory - only discusses aqueous solutions

BRØNSTED - LOWRY

- Focuses on transfer of H^{+}(a proton) ions during an acidbase reaction
- acids - donates a proton
- bases - accepts a proton
$-\mathrm{HCl}+\mathrm{NH}_{3} \Leftrightarrow \mathrm{NH}_{4}++\mathrm{Cl}^{-}$
- act of donating cannot happen in isolation - can't donate without an acceptor

CONJUGATE PAIRS

- Reaction between acid A and base B:
- $\mathrm{HA}+\mathrm{B} \Leftrightarrow \mathrm{A}^{-}+\mathrm{BH}^{+}$
- HA \& $A^{-} \rightarrow$ conjugate acid-base pair
- $\mathrm{B} \& \mathrm{BH}^{+} \rightarrow$ conjugate acid-base pair

CONJUGATE PAIRS

- $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(0)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
- Label the conjugate acid-base pairs in the reaction
- In a conjugate pair, the acid will always have one more proton than its conjugate base - makes it easy to predict formulas

PREDICTING FORMULAS

- Write the conjugate base for the following:
- $\mathrm{H}_{3} \mathrm{O}^{+}$
- NH_{3}
- $\mathrm{H}_{2} \mathrm{CO}_{3}$
- Write the conjugate acid for the following
- $\mathrm{NO}_{2}{ }^{-}$
- OH^{-}
- $\mathrm{CO}_{3}{ }^{2-}$

AMPHOTERIC / AMPHIPROTIC

being able to act as an acid or a base

- what is water acting as in both reactions?
- $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
- $\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{NH}_{4}^{+}\left(\mathrm{aq)}+\mathrm{OH}_{(\mathrm{aq})}^{-}\right.$
- To act as a B-L acid - must be able to dissociate and release H^{+}ions
- To act as a B-L base - must be able to accept H+ - must have a lone pairs of electrons

PROPERTIES OF ACIDS/BASES

- How do we know if something is an acid or a base?
- indicators

indicator	color in acid	color in base
litmus	pink	blue
methyl orange	red	yellow
phenolphthalein	colorless	pink

ACID/BASE REACTIONS

- Acids react with metals, bases, carbonates to form salts
- salt - when a hydrogen from an acid is replaced with a metal or another positive ion

ACID/BASE REACTIONS

3 types of reactions

1. Acid + metal \rightarrow salt + hydrogen

$$
2 \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

- Written as an ionic equation
- $2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}_{(\text {(aq) }}+\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}_{(\text {(aq) }}+\mathrm{H}_{2(\mathrm{~g})}$
- Net Reaction: $2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~s})}$
- $\mathrm{Cl}-\rightarrow$ spectator ion because it does not change

ACID/BASE REACTIONS

2. Acid + Base \rightarrow Salt + Water

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{HOH}
$$

- This is the 'classic' neutralization
- $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{HOH}$
- This reaction can be studied quantitatively using a titration - later in chapter
- (acid soil, indigestion)

ACID/BASE REACTIONS

3. Acid + Carbonate \rightarrow Salt + Water $+\mathrm{CO}_{2}$
(An IB Favorite!)

$$
2 \mathrm{HCl}+\mathrm{CaCO}_{3} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

- will give off bubbles known as effervescence

STRONG AND WEAK: ACIDS AND BASES

- $H A_{(a q)} \Leftrightarrow H^{+}{ }_{(\mathrm{aq})}+\mathrm{A}_{(\mathrm{aq})}$
- The strength of the acid depends on where this equilibrium lies
- strong acid - equilibrium will lie to the right
- Fully dissociated (i.e. HCl)
- weak acid - equilibrium will lie to the left
- Partially dissociated (i.e. $\mathrm{CH}_{3} \mathrm{COOH}$)

STRENGTH...

- Same is true for bases:
- strong: $\mathrm{NaOH}_{(\mathrm{aq})} \Leftrightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
- weak: $\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$

STRONG VS. WEAK

- The number of weak acids/bases far outnumber the strong ones
- Common strong acids: $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
- Common strong bases: LiOH, NaOH, KOH, $\mathrm{Ba}(\mathrm{OH})_{2}$
- remember these - all others will be weak

DISTINGUISHING BETWEEN STRONG AND WEAK

- Three properties that depend on the concentration of the ions:

1. Electrical Conductivity
2. Rate of reaction - faster rate with stronger acids
3. pH - lower the pH , stronger the acid

The pH Scale

- $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$
- or
- $\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}$
- features of the pH scale:
- pH numbers are usually positive and have no units
- pH is inversely related to $\left[\mathrm{H}^{+}\right]$
- The change of one pH unit = 10 fold change in $\left[\mathrm{H}^{+}\right]$

pH

- Very wide range of concentration values into a 14 point scale
- a change from 5.5 to 4.5 for the pH of rain can be fatal to some plant life
- 7.4 - pH of our blood - 6.9 and 7.9 can be fatal (controlled by buffers [later])
- Depends on relationship between $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$

18.1 LEWIS ACID/BASE THEORY

- Lewis - discussed the transfer of electron pairs
- Lewis Acid - electron pair acceptor
- Lewis Base - electron pair donor
- Lewis Bases \& B-L Bases are same group of compounds
- both must have a lone pair of electrons to donate

18.1 LEWIS ACID/BASE THEORY

- The curly arrow is a convention used to show the donation of an electron pair.

- BF_{3} has an incomplete octet, so it can act as a Lewis acid by accepting an electron pair from ammonia.
- A coordinate bond is formed.

LEWIS ACIDS/BASES

- $\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
- in this situation, $\mathrm{H}_{2} \mathrm{O}$ is a ligand, donating a pair of electrons to the copper
- \therefore ligands will be the Lewis base

COMPARISON OF TWO THEORIES

Theory Definition of acid

Definition of base

Brønsted-Lowry

Lewis

Proton donor

Electron pair acceptor

Proton acceptor

Electron pair donor
18.2 - Calculations involving acids and bases

- lonization of water:
- $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{H}^{+}\left(\mathrm{aq)}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right.$
- Therefore $K_{c}=$??
- $\mathrm{K}_{\mathrm{c}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right][\mathrm{OH}-]$
- $\mathrm{K}_{\mathrm{c}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

K_{w}

- K_{w} has a fixed value @ $25^{\circ} \mathrm{C}=1.00 \times 10^{14}$
- In pure water $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
- So.... $\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-7}$
which gives $\mathrm{pH}=7$
- K_{w} is temperature dependent...page 367 !

H^{+}vs. OH^{-}

- The relationship is inverse:
- acidic solution $\rightarrow\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right] \quad \mathrm{pH}<7$
- neutral solution $\rightarrow\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] \mathrm{pH}=7$
- basic solution $\rightarrow\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right] \mathrm{pH}>7$
- If we know one, we can calculate the other...

EXAMPLE...

- A sample of blood at $25^{\circ} \mathrm{C}$ has $\left[\mathrm{H}^{+}\right]=4.60 \times 10^{-8}$ mol dm³ (page 359)
- Calculate the concentration of OH^{-}and state whether the blood is acidic, basic or neutral.
- How would you expect its pH to be altered at body temperature $\left(37^{\circ} \mathrm{C}\right)$?

$\mathrm{pH} \& \mathrm{pOH}$

- $K_{w}=\left[\mathrm{H}^{+}\right][\mathrm{OH}]=1.00 \times 10^{-14}$ @ $25^{\circ} \mathrm{C}$
- $10-\mathrm{pH} \times 10-\mathrm{pOH}=1.00 \times 10^{-14}$
- take the negative log of both sides
- $\mathrm{pH}+\mathrm{pOH}=14$

EXAMPLE

- Lemon juice has a pH of $2.90 @ 25^{\circ} \mathrm{C}$. Calculate its $\left[\mathrm{H}^{+}\right],[\mathrm{OH}]$, and pOH. (page 369)

EXAMPLE

- Calculate the pH of the following at 298K. (page 370)
- $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}_{(\mathrm{aq})}$
- $0.15 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$

WEAK ACIDS AND BASES (31-43)

- Why are some acids and bases considered weak?
- How do you think we can measure the amount that has dissociated?
- Generic weak acid HA dissociating in water
- $\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{()} \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}+\mathrm{A}_{(\mathrm{aq})}^{-}$
- what is K_{c} going to look like?

WEAK BASES

- Generic weak base B dissociating in water
- $\mathrm{B}_{(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{BH}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}$
- what is K_{c} going to look like?

K_{A} AND K_{B}

- K_{a} - acid dissociation constant
- K_{b} - base dissociation constant
- $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is considered a constant so it is combined with K_{c}.
- Write the expressions for K_{a} and K_{b} for the following acid and base.
- $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}$
- $\mathrm{NH}_{3(\mathrm{aq})}$

Calculations involving K_{a} and K_{b}

- Things to remember for K_{a} and K_{b} calculations
-The given concentration is its initial concentration, before dissociation occurs
- The pH (or pOH) refers to concentration of H^{+}and OH^{-} at equilibrium
-The values substituted into K_{a} and K_{b} expressions must be equilibrium values
- when dissociation is small...use the approximations
- [acid $]_{\text {nintial }}=[\text { acid }]_{\text {equilibrium }}$ and $[\text { base }]_{\text {nititial }}=[\text { base }]_{\text {equilibrium }}$

EXAMPLE

- Calculate K_{a} at $25^{\circ} \mathrm{C}$ for a 0.01 mol dm ${ }^{-3}$ solution of ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$. It has a pH of 3.4 at this temperature.
- Use RICE!

ANOTHER

- Calculate K_{b} for a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$. Its pH is 11.80 at this temperature.

EXAMPLE...

- A $0.75 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of ethanoic acid has a value for $K_{a}=1.8 \times 10^{-5}$ at a specified temperature. What is its pH at this temperature?

ONE MORE...

- A $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of ammonia has a K_{b} of 1.8×10^{-5} at $25^{\circ} \mathrm{C}$. What is its pH?

pK_{a} and $\mathrm{p} \mathrm{K}_{\mathrm{b}}$

- Who enjoys using those very small numbers with negative exponents for K_{a} and K_{b} ?
- You're in luck!!
- Just as we do with small concentrations \rightarrow pH \& pOH we will use the $-\log _{10}$ to convert K_{x} to pK_{x}
- $p K_{a}=-\log _{10} K_{a}$
- $K_{a}=10-p K_{a}$
\&
$p K_{b}=-\log _{10} K_{b}$
\& $\quad K_{b}=10-\mathrm{pKb}$

INFORMATION ON K ${ }_{A}$ AND K_{B}

- $p K_{a}$ and $p K_{b}$ are usually positive and have no units truly only useful for weak acids and bases
- The relationship between K_{a} and $\mathrm{p} \mathrm{K}_{\mathrm{a}}$ and between K_{b} and $\mathrm{p} \mathrm{K}_{\mathrm{b}}$ are inverse (stronger the acid/base, larger the $\mathrm{K}_{\mathrm{a} / \mathrm{b}}$ lower the $\mathrm{pK}_{\mathrm{a} / \mathrm{b}}$)
- pK_{a} and $\mathrm{pK} \mathrm{K}_{\mathrm{b}}$ must be quoted at a specific temperature
- More data booklet!! - Table 21 - common pK_{a} and pK b values

$K_{A}, K_{B}, A N D K_{W}$

- $K_{a} \times K_{b}=\left[H^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{w}$
- take negative log of both sides
- $p K_{a}+p K_{b}=p K_{w}$
- at $25^{\circ} \mathrm{C} K_{w}=1.00 \times 10^{-14}$
- $p K_{w}=14.00$
$\therefore \mathrm{pK}_{\mathrm{a}}+\mathrm{pK} K_{b}=14.00\left(a t 25^{\circ} \mathrm{C}\right)$

CONJUGATE PAIRS

- $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
- $K_{a}=1.8 \times 10^{-5}$
- what do you know about the dissociation in this reaction?
- Is this a strong acid?
- What about its conjugate base $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$?
- Chart on page 377

EXAMPLE

- The pK a_{a} of ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, at $25^{\circ} \mathrm{C}$ is 4.76. What is the pK_{b} of its conjugate base, $\mathrm{CH}_{3} \mathrm{COO}$?
- The $\mathrm{pK} \mathrm{a}_{\mathrm{a}}$ of methanoic acid, HCOOH at $25^{\circ} \mathrm{C}$ is 3.75 . Is its conjugate base weaker or stronger than that of ethanoic acid?

BUFFER SOLUTIONS

- something that acts to reduce the impact of one thing on another (a shock absorber)
- A buffer solution is resistant to changes in pH with the addition of small amounts of acid or alkali

$1 \mathrm{dm}^{3}$

addition of $0.1 \mathrm{~cm}^{3} 1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl} \longrightarrow \mathrm{pH} 4$ pH 7 addition of $0.1 \mathrm{~cm}^{3} 1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ pH 10

HOW BUFFERS WORK

- 2 main types of buffers
- acidic - maintain the pH at a value less than 7
- basic - maintain the pH at a value more than 7
- Mixture of 2 solutions
- each contain a conjugate acid-base pair

ACIDIC BUFFERS

- Made by mixing a weak acid with a solution of its salt of a strong alkali
- ie. $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}$ with $\mathrm{NaCH}_{3} \mathrm{COO}$
- weak acid salt of weak acid with strong alkali
- Two equilibria exist in this buffer
- $\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
- $\mathrm{NaCH}_{3} \mathrm{COO} \Leftrightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

Has high concentrations of both acid and base - ready to react with either H^{+}or OH^{-}

RESPONSE TO ADDED ACIDS AND BASES

- Adding acid -
- $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}$
- Adding base
- $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$

BASIC BUFFERS

- Made by mixing a weak base with a solution of its salt of a strong acid
- ie. NH_{3} with $\mathrm{NH}_{4} \mathrm{Cl}$
- $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
- $\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}$

Has high concentrations of both acid and base ready to react with either H^{+}or OH^{-}

Response to added acids and bases

- Addition of acid
- H^{+}combines with the base NH_{3} to form $\mathrm{NH}_{4}{ }^{+}$
- Addition of base
- OH - combines with the acid $\mathrm{NH}_{4}{ }^{+}$to form NH_{3} and water - removing most of OH^{-}

What can influence buffers?

- Dilution
- does not change the pH of the buffer, but it does lower the buffering capacity (the amount of acid or base a buffer can absorb without significant changes in pH) - dependent on Molar concentrations
- Temperature
- Temperature affects the values of K_{a} and K_{b} therefore affects the pH (must be held constant)
- What's another process that temperature must be constant?

SALT HYDROLYSIS

- Tell me what you know about neutralization reactions
- acid + base \rightarrow salt + water
- Is this solution neutral? Will it always be?
- What do you think the pH will depend on?

ANION HYDROLYSIS

- HA - acid A- conjugate base
- When the acid is weak, this conjugate base, $A^{\text {- }}$, is strong enough to hydrolyse water:
- $\mathrm{A}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HA}^{-\mathrm{OH}^{-}}$
- This release of OH^{-}will cause an increase in pH

CATION HYDROLYSIS

- MOH - base M^{+}- conjugate
- When the base is weak, and the conjugate is a non-metal, (ie. $\mathrm{NH}_{4}{ }^{+}$), it is able to hydrolyse water:
- $\mathrm{M}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MOH}+\mathrm{H}^{+}$(decrease in pH$)$

CATION HYDROLYSIS

- When the cation is a metal, there is a little complexity involved - depends on charge density as well
- For ions with $a+2$ or +3 charge and are small, they hydrolyse water to form a complex
- The charge center attracts the water and forms OH bonds - H^{+}are then released into the solution (acidic)

CATION HYDROLYSIS

- The ions that can do this:
- $\mathrm{Be}^{+2}, \mathrm{Al}+3$, and transition metals - most notably $-\mathrm{Fe}^{+3}$
- Group 1 \& other group 2 metals do not have sufficient charge density to be acidic in water

ACID/BASE BEHAVIOR

- What happens when:
- Strong Acid - Strong Base
- Weak Acid - Strong Base
- Strong Acid - Weak Base
- Weak Acid - Weak Base

TITRATION

- Quick Vocabulary:
- Burette - long graduated cylinder with stopcock
- Pipette - small glass measuring tube
- Equivalence Point - point at which the acid and base exactly neutralize each other

TITRATION CURVES

- pH vs. Volume added
- Four types of Curves:
- What you need to find out (put in your notes):
- Strong Acid/Strong Base
- Weak Acid/Strong Base
- Strong Acid/ Weak Base
- Weak Acid/Weak Base
- An example of each
- Short description
- Drawing of the titration curve
- Add any extra relevant information

STRONG ACID \& STRONG BASE

-Initial $\mathrm{pH}=1$ (pH of strong acid)
-pH changes only gradually until equivalence

- Very sharp jump in pH at equivalence: from pH 3 to pH 11
-after equivalence the curve flattens out at a high value (pH of strong base)
- The pH at equivalence $=7$.

WEAK ACID \& STRONG BASE

- Initial pH fairly high (pH of weak acid)
-The pH stays relatively constant until equivalence - labeled as buffer region
- Jump in pH at equivalence from about pH 7.0-11.0, which is not as much of a jump as for a strong acidstrong base titration
- After equivalence the curve flattens out at a high value (pH of strong base)
-The pH at equivalence is >7

STRONG ACID \& WEAK BASE

- Initial $\mathrm{pH}=1$ (pH of strong acid)
- The pH stays relatively constant through the buffer region to equivalence.
- Jump in pH at equivalence from about pH 3.0-7.0
- After equivalence the curve flattens out at a fairly low pH (pH of weak base)
- The pH at equivalence <7.

WEAK ACID \& WEAK BASE

- Initial pH is fairly high (pH of weak acid)
- Addition of base causes the pH to rise steadily
-Change in pH at the equivalence point is much less sharp than in the other titration
- After equivalence the curve flattens out at a fairly low pH (pH of weak base

INDICATORS

- Either weak acids or bases in which the dissociated and the undissociated forms are different colors
- $\mathrm{HIn} \Leftrightarrow \mathrm{H}^{+}+\mathrm{In}^{-}$
- color A color B
- Using Le Chatelier's, a shift in H^{+}will cause a change in color

WHEN DO INDICATORS CHANGE?

- When the $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$: known as the change point
- Change points and pK_{a} are listed on Table 22! Yay!

Choosing an Appropriate indicator

- determine what combination of weak and strong acid and base are reacting
- find the pH of the salt solution at the equivalence point
- Choose an indicator with an endpoint in the range of the equivalence point

ACID DEPOSITION

- rain is naturally acidic (dissolved CO_{2}), $\mathrm{pH}=5.6$
- Acid Rain: solutions with pH below 5.6
- Primary Pollutants: oxides of sulfur and nitrogen
- Secondary Pollutant: acid rain after the acidic gases dissolve in water.

ACID DEPOSITION

- Wet acid deposition: rain, snow, sleet, hail, fog, mist, dew falling to the ground.
- Dry acid deposition: acidifying particles, gases fall to ground as dust/smoke, later dissolving in water to form acids.

SULFUR OXIDES

-Produced from burning of fossil fuels (coal / heavy oil) in power plants used to generate electricity

- Smelting - extracting metal from ore
-ESTIMATE: 50% of sulfur dioxide comes from burning coal.

SULFUR DIOXIDE

$\mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})}$
Colorless gas with a sharp smell (rotten eggs). Dissolves in water to form $\mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq})}$

$$
\mathrm{H}_{2} \mathrm{O}_{(0)}+\mathrm{SO}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq})}
$$

Sulfuric acid can also result:

$$
\begin{aligned}
& 2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3(g)} \\
& \mathrm{H}_{2} \mathrm{O}_{(0)}+\mathrm{SO}_{3(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4(a \mathrm{aq}}
\end{aligned}
$$

OTHER OXIDATIONS

- Photo-oxidation - during sunlight hours
- Catalyzed by tiny particles of metal (Fe, Mn)
- O_{3} or $\mathrm{H}_{2} \mathrm{O}_{2}$ present as pollutants
- Hydroxyl free radicals:
$\bullet \mathrm{HO}+\mathrm{SO}_{2} \rightarrow \mathrm{OHOSO}_{2}$
$\cdot \mathrm{HOSO}_{2}+\mathrm{O}_{2} \rightarrow \bullet \mathrm{HO}_{2}+\mathrm{SO}_{3}$

NITROGEN OXIDES

- NO produced from internal combustion engines
- NO_{2} also produced (brown gas)
$\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
$2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
Further reaction with water:
$\mathrm{H}_{2} \mathrm{O}_{(l)}+2 \mathrm{NO}_{2(\mathrm{~g})} \rightarrow \mathrm{HNO}_{2(\mathrm{aq})}+\mathrm{HNO}_{3(\mathrm{aq})}$
Alternatively:
$2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{HNO}_{3(\mathrm{aq})}$

HYDROXYL FREE RADICALS

$\bullet \mathrm{HO}+\mathrm{NO} \rightarrow \mathrm{NHO}_{2}$
$\cdot \mathrm{HO}+\mathrm{NO}_{2} \rightarrow \mathrm{HNO}_{3}$

In summary: main components of acid rain are $\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{2}$, and HNO_{3}

EFFECTS OF ACID DEPOSITION

- Materials (stone and metal)
- marble and limestone are CaCO_{3} and react with acid to form CaSO_{4} (with sulfuric acid) and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ (with nitric acid).
-both are more soluble than the carbonate and so dissolve or cause expansion (cracking the structure)
- Metals (Fe) also form soluble salts $\left(\mathrm{FeSO}_{4}\right)$ with sulfuric acid.
- Aluminum will also react with nitric acid to form soluble $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ damaging bridges, vehicles and railroad tracks.

EFFECT ON PLANT LIFE

-LEACHING:

-important minerals like $\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$, and K^{+} become soluble and wash away.
-Mg: impedes chlorophyll synthesis
-Al: increased release of this ion damages plant roots

EFFECT ON WATER

-A ${ }^{3+}$ ions leaching into the water interfere with fish gill function, limiting oxygen intake.
-Results in bodies of water becoming 'dead' - unable to support life.
-Fish can't survive below a pH of 5 .
-Eutrophication: over fertilization of bodies of water, resulting in algal blooms, leading to oxygen depletion.

IMPACT ON HUMAN HEALTH

- Not direct, but increased particulates in atmosphere are linked to asthma, bronchitis and emphysema.
- Irritants to eyes
- Reaction of acid rain with metals could increase heavy metal ion concentration in water supplies (Pb, Al, Cu)

RESPONSES TO ACID RAIN

Reduction of SO_{2} emissions

1. Pre-combustion

Hydrodesulfurization - catalytic process to remove sulfur from refined petroleum products
2. Post-combustion

Flue-gas desulfurization (remove 90% of SO_{2}) by forming CaSO_{4} which has an industrial use in making plasterboard.

REDUCTION OF NOx

1. Catalytic converters in vehicles
-hot gases mixed over Pt or Pd based catalysts converting them back to CO_{2} and N_{2}
2. Lower temperature combustion

- Recirculating exhaust gases back into the engine lowers temperature to reduce nitrogen oxide emissions.

