

An Introduction to Kinetics & Thermodynamics Unit 9 - Advanced Topic

What is Thermodynamics?

- Heat Energy in relation to work done within a system.
- We can use an equation to represent the relationship between <u>Spontaneity</u> and Favorability
- Three Concepts
 - 1. Enthalpy heat of reaction (ΔH)
 - Endothermic vs. Exothermic
 - 2. Entropy disorder of reaction (ΔS)
 - Is disorder increasing or decreasing as the reaction proceeds?
 - 3. Free Energy energy the system has to do work (ΔG)
 - Is the reaction spontaneous or not?

Bond Enthalpy

- Predicting Endothermic or Exothermic
 - Bond Energy (E to break bonds) 436 155

 $H_{2(g)} + F_{2(g)}$

$\Delta H_{rxn} = \sum [bonds broken] - \sum [bonds formed]$

$\Delta H_{rxn} = [436 \text{ kJ/mol} + 155 \text{ kJ/mol}] - [2(567 \text{ kJ/mol})]$

$\Delta H_{rxn} = -543 \text{ kJ/mol}$

ΔH values will be given to you!

Hess's Law

• Determining ΔH for a reaction is possible regardless of the number of steps to get to the product.

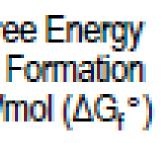
$\Delta H = \Delta H_A + \Delta H_B + \Delta H_C + \dots$

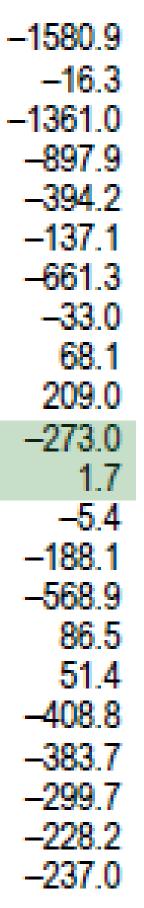
<u>General Rules</u>:

- 1. Manipulate equations so they add together to give desired results.
- 2. Enthalpy of formation of an *element* under STP is 0.
- 3. When the reaction is reversed, enthalpy is reversed.
- 4. If a balanced equation is multiplied by a coefficient, so is the enthalpy.
- 5. Substances on both sides of equation can be subtracted out.

Hess's Law

$2HI_{(g)} + F_{2(g)} \rightarrow 2HF_{(g)} + I_{2(g)}$ ΔH of formation! (ΔH_f)


$\Delta H = \Delta H_A + \Delta H_B + \Delta H_C + \dots$


١		
• }		
•		

STANDARD ENERGIES OF FORMATION OF COMPOUNDS AT 1 atm AND 298 K

Compound	Heat (Enthalpy) of Formation * kJ/mol (∆H _f °)	Fre of F kJ/n
Aluminum oxide $AI_2O_3(s)$ Ammonia $NH_3(g)$ Barium sulfate $BaSO_4(s)$ Calcium hydroxide $Ca(OH)_2(s)$ Carbon dioxide $CO_2(g)$ Carbon monoxide $CO(g)$ Copper (II) sulfate $CuSO_4(s)$ Ethane $C_2H_5(g)$ Ethene (ethylene) $C_2H_4(g)$ Ethyne (acetylene) $C_2H_2(g)$	-1674.1 -46.0 -1471.8 -985.2 -393.3 -110.4 -770.8 -84.4 52.3 226.6	
Hydrogen fluoride HF(g) Hydrogen iodide HI(g)	-270.9 26.3	
Iodine chloride ICI(g) Lead (II) oxide PbO(s) Magnesium oxide MgO(s) Nitrogen monoxide NO(g) Nitrogen dioxide NO ₂ (g) Potassium chloride KCI(s) Sodium chloride NaCI(s) Sulfur dioxide SO ₂ (g) Water H ₂ O(g) Water H ₂ O(ℓ)	18.0 215.3 601.1 90.3 33.0 436.4 410.9 296.4 241.6 285.5	

* Minus sign indicates an exothermic reaction. Sample equations: $2AI(s) + {}^{3}I_{2}O_{2}(g) \rightarrow AI_{2}O_{3}(s) + 1674.1 kJ$ $2AI(s) + {}^{3}I_{2}O_{2}(g) \rightarrow AI_{2}O_{3}(s) \quad \Delta H = -1674.1 kJ/mol$

Gibbs Free Energy

 $\Delta G = Change in Gibbs free energy$ $\Delta H = Change in Enthalpy (heat)$ T = Temperature (K) $\Delta S = Change in Entropy$

- Things to Consider in the system:
 - Endo vs. Exo (enthalpy, ΔH)
 - Order vs. Disorder (entropy, ΔS)
 - The temperature at which the change occurs

$\Delta G = \Delta H - T\Delta S$

Is the Reaction Favorable/Spontaneous?

Favorable Reaction

- $\Delta H < 0$
- $\Delta S > 0$
- Exothermic Rxn.
- Increased entropy

A reaction will always be spontaneous if the ΔG is NEGATIVE.

Unfavorable Reaction

- $\Delta H > 0$
- $\Delta S < 0$
- Endothermic Rxn.
- Decreased entropy

$\Delta G = \Delta H - T\Delta S$

Gibbs' Practice

spontaneous or non-spontaneous at this temperature?

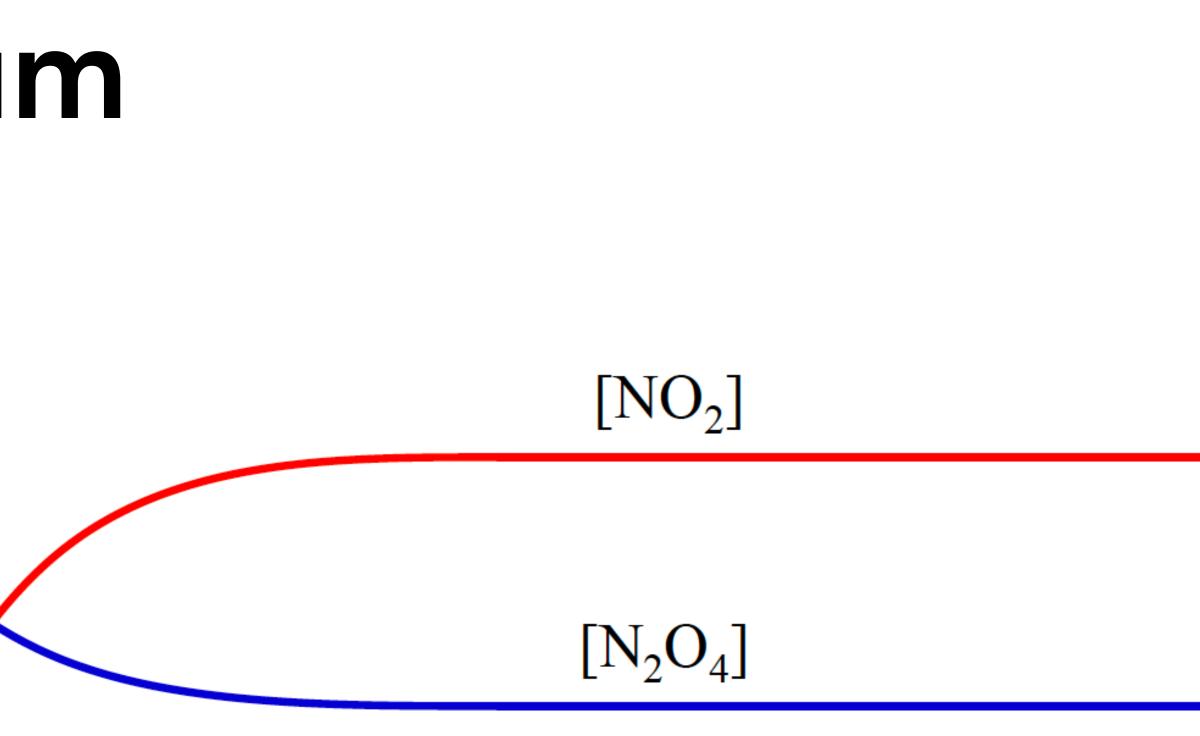
$\Delta G = \Delta H - T\Delta S$

For the decomposition reaction of CaCO₃ to CaO and CO₂ at 298K, the ΔH is 178.5 kJ/mol and the ΔS is 161.6 J/mol•K. Is the reaction

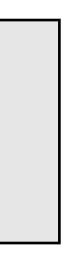
What temperature would make this decomposition spontaneous?

Dynamic Equilibrium

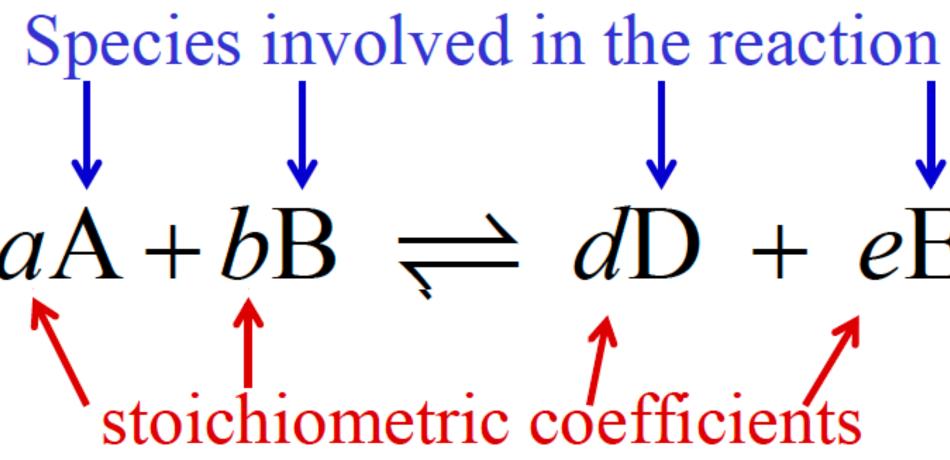
Most reactions do not go to completion.


- Here, all of the reactants <u>do not</u> get used up.
- The system reaches a dynamic state where reactants are continually turning into products, and products are continually turning back into reactants.

 $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$


Dynamic Equilibrium $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$ **Concentration (mol/L)**

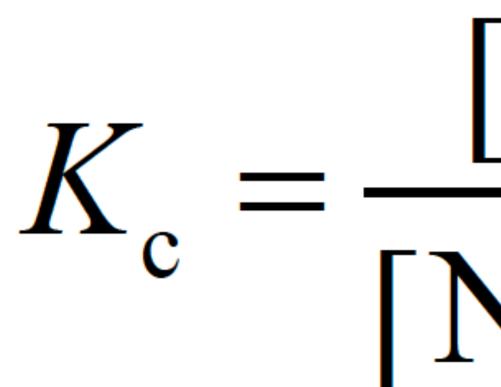
In this example, the system *initially* eventually establishes equilibrium.



Time

In this example, the system initially contains only reactants, N₂O₄, and

The Equilibrium Constant (K_{ea})


 $aA + bB \rightleftharpoons dD + eE$ stoichiometric coefficients

 $[A]^a [B]^b$

square brackets represent concentration in [mol/L]

> Units for Concentration mol/L = M

Example: Equilibrium Expression (K_c)

- Write the equilibrium expression, K_c, for:
 - $N_2(q) + O_2(q) \rightleftharpoons 2NO(q)$
 - $K_{\rm c} = \frac{[NO]^2}{[N_2][O_2]}$

Example: Equilibrium Expression (K_c)

$\frac{[Cl_2]^2}{[HCl]^4[O_2]}$

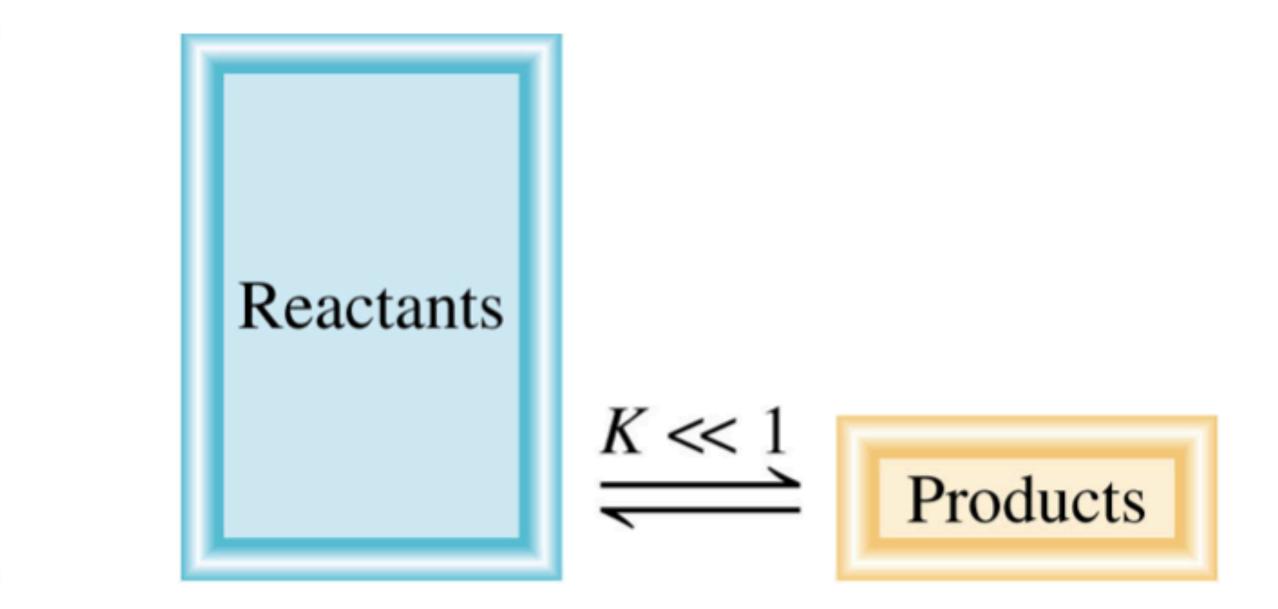
Write the equilibrium expression, K_c, for:

$4HCl(aq) + O_2(g) \rightleftharpoons 2Cl_2(g) + 2H_2O(l)$

Adding or taking away small amounts of water in a reaction that takes place in an aqueous solution does not affect the overall concentration of H₂O

Details About the Equilibrium Constant, K

Products


- Small **K** means little to no reaction
- Large K means the reaction goes to or near completion
- equilibrium.

 $K \gg 1$

• K indicates how far a reaction will proceed towards the products at a given temperature.

Intermediate K means significant amounts of reactants and products are present at

