2.6 Resonance and Formal Charge

• Formal Charge

- Resonance Structures
- Bond Order, Bond Length and Bond Energy

Formal Charge

- In some cases, more than one Lewis diagram is possible for a given molecule.
- Formal Charges can be calculated to identify the most stable (likely) structure.
 - Neutral molecules: sum of charges will be zero
 - Polyatomic ion: sum will be equal to the overall charge

or

Formal Charge

of valence electrons of the neutral atom

• Which is the most likely structure?

number of bonding e-

2

number of lone e- around atom +

Cl	Cl	Cl
7	7	5
7	7	5
0	0	0

$:\mathbf{C} = \mathbf{S} = \mathbf{N}:$ or $:\mathbf{S} = \mathbf{C} = \mathbf{N}:$

- Draw the Lewis structure for SO_4^{2-} and check it using formal charges. • Count the total number of valence electrons in the polyatomic ion.

• Put the least electronegative atom in the center and connect terminal atoms to it with single bonds.

- Complete the octets for all terminal atoms.

6 – 7

6 - 7 = (-1)

• Check the formal charges.

 Add multiple bonds or change the ar charges if necessary.

• Add multiple bonds or change the arrangement of atoms to eliminate formal

Resonance Structures

- For many molecules, double or triple bonds are located between different atoms.
- The result is more than one Lewis structure is possible.

• Ex: O_3

• Be prepared to draw all possible structures with \leftrightarrow arrows.

Resonance Structures

• Example: NO₃-

Effective number of bonds between atoms = # of bonds / # of atoms

Resonance, Bond Length & Bond Energy

• Which structure has the shortest bonds?

Bond order = 1.5

Bond order = 1.33

Resonance, Bond Length & Bond Energy

• Which structure has the greatest bond energy?

0 - 0 = 0:

Bond order = 1.5

Bond order = 2.0

Limitations of the Lewis Structure Model

Part 1

- Many of the double bonds that are shown in the accepted Lewis structures are not really double bonds - they are 1.5, 1.33, or 1.25 bonds.
- In some cases, resonance must be used to refine a Lewis structure in order to obtain qualitatively accurate predictions about the effective number of bonds, bond energy and bond length.

Limitations of the Lewis Structure Model

Part 2

 The octet rule fails when there are numbers of valence electrons. (Wait, what??)

• Nitrogen monoxide, NO

N has 5 valence e^- O has 6 valence e^{-1}

11 valence e^-

O gets 8, as it is more electronegative

Limitations of the Lewis Structure Model **Part 3**

- Incomplete octets and other issues
- This is the accepted Lewis structure for BF₃, and other compounds off boron for 2 reasons.
 - Boron has less ability to attract electrons to fill its octet, as it only has 5 protons in its nucleus.
 - The formal charges work out.
 - Several resonance forms exist, but experiments suggest this is the predominant structure.

Limitations of the Lewis Structure Model

• Expanded octets also fail the octet rule.

