2.7 VSEPR & Hybridization

- VSEPR Theory
- Molecular Shape
- Polar and Non-polar Molecules
- Hybrid Orbitals

VSEPR Theory

- Charge clouds (centers) repel each other due to Coulombic forces.
- Terminal atoms move as far away from one another as possible.
- Distinctive geometric shapes result.

Valence Shell Electron Pair Repulsion Theory

VSEPR Theory

- central atom.
- 2. Predict the shape.

(FLASH CARDS)

Two Step Process

1. Count the number of charge clouds, bonds and lone pairs around the

a. 13 shapes which you must know by name and the bond angles

VSEPR Theory

Charge Clouds (Centers)

- One single bond (2 electrons)
- One double bond (4 electrons)
- One triple bond (6 electrons)
- One lone pair (2 electrons)
- One single unpaired electron

One Bond

- single bond (2 electrons)
- double bond (4 electrons)
- triple bond (6 electrons)

Lone Pairs

- 1 lone pair = 2 electrons
- 1 single unpaired electron

	2	Charg	e
Charge Clouds	Bonds	Lone Pairs	Sł
2	2	0	Li

Clouds (CO₂) Bond Angle = 180° nape inear

Charge Clouds	Bonds	Lone Pairs	Sh
3	2	1	Be

Charge Clouds	Bonds	Lone Pairs	Sha
3	3	0	Trig Pla

Η— Н

Charge Clouds	Bonds	Lone Pairs	Sh
4	4	0	Tetra

4 Charge Clouds (NH₃) Lone Pair H Ideal Bond Angle = 109.5°

Charge Clouds	Bonds	Lone Pairs	Sh
4	3	1	Trig Pyra

ape gonal midal

... • Lone Pairs

Charge Clouds	Bonds	Lone Pairs	Sh
4	2	2	B

ape

ent

Charge Clouds	Bonds	Lone Pairs	Sha
5	5	0	Trig Bipyra

5 Charge Clouds (PCl₅)

:F: :S. :F:	5 F:		
Charge Clouds	Bonds	Lone Pairs	Sh
5	4	1	See

Charge Clouds	Bonds	Lone Pairs	Sha
5	3	2	T-sha

Charge Clouds	Bonds	Lone Pairs	Sh
5	2	3	Lin

Charge Clouds	Bonds	Lone Pairs	Sh
6	6	0	Octal

Charge Clouds	Bonds	Lone Pairs	Sha
6	5	1	Squ Pyrai

6 Charge Clouds (IF₅)

6 Charge Clouds (XeF₄)

Charge Clouds	Bonds	Lone Pairs	Sha
6	4	2	Squ Pla

Bond Angle = 90

uare anar

Xe

Compounds with Multiple Central Atoms

- 1. Look at each central atom on its own.
 - everything it's bonded to is considered to be a terminal atom.
- 2. Count the charge clouds and bonds around it.
- 3. Predict the shape around it.
- 4. Isolate the next central atom and repeat steps 1 through 3.

- The atomic orbitals around the central atom in a molecule must hybridize in order for bonding to occur.
- There are 3 types of hybrid orbitals (and bond angles) that you must know.

Charge Clouds	Determining Hybridization	Hybridization	Ideal Bond Angle
4	s + p + p + p	sp ³	109.5°
3	s + p + p	sp ²	120°
2	s + p	sp	180°

Hybrid Orbitals

Double Bonds (C₂H₄)

- Each carbon has 3 charge clouds.
- sp² hybridization (120°)
- Double bonds consist of one sigma bond an one pi bond.

Double Bonds (C₂H₄)

sp²

 sp^2

- Each carbon has 3 charge clouds.
- sp² hybridization (120°)
- Double bonds consist of one sigma bond an one pi bond.

Triple Bonds (C₂H₂)

- Each carbon has 2 charge clouds.
- sp hybrid orbitals (180°)
- Triple bonds consist of one sigma bond and 2 pi bonds.

$\begin{array}{c} \text{Triple Bonds (C_2H_2)} \\ H - C \equiv C - H \end{array}$

sp

- Each carbon has 2 charge clouds.
- sp hybrid orbitals (180°)
- Triple bonds consist of one sigma bond and 2 pi bonds.

σ-Bond & π-Bond Energy

sp²

•

p

sp²

 sp^2

Sigma and pi bonds involve the overlapping of atomic orbitals.

 π Bond

p

sp²

sp²

sp²

 σ Bond

Sigma bonds contain more bond energy, as the overlap between orbitals is stronger.

Extended π-Bonding (Benzene, C₆H₆)

- Alternating single and double bonds that move.
- Each p-orbital can overlap with 2 different p-orbitals.
- Results in <u>delocalization</u> of electrons used to explain resonance in Lewis structures.

- element in the chemical bond.
- the less electronegative element a slightly positive charge.

Bond Polarity

Shared electrons spend more time around the most electronegative

• Gives the more electronegative element a slightly negative charge and

Greater electronegativity values lead to greater partial charges and greater bond dipoles.

• If a molecule is polar, it must have a dipole moment, u.

Q = absolute value of the net partial charge at each end of a moleculer = distance between positive and negative poles of a molecule.

- To know if a molecule is polar:
 - you must know if the bonds are polar
 - you must know the overall shape of the molecule

 $\mu = Q \times r$

• Polar - bond dipoles do not cancel, so the molecule has a dipole moment

For polar molecules consisting ot two atoms, the partial negative charge on the more electronegative atom is always equal in magnitude to the partial positive charge on the less electronegative atom.

 Non-Polar - Two polar C=O bon cancel. No dipole moment

• Non-Polar - Two polar C=O bonds are symmetrical so bond dipoles

Polar - Two polar bonds asymmetry oxygen. Dipoles do not cancel.

2δ

Polar - Two polar bonds asymmetrically arranged around the central

Diatomic Molecules

- Two diatomic molecules that contain atoms from the same group in the same proportions:
 - will have the same shape will both be either polar or non-polar.
- This can help chemists design new materials.
 - Replacing an element from one group with another from the same group could lead to a new substance with similar properties.
 - SiO₂ can be used to make ceramics. SnO₂ might work just as well or better.