3.4 Ideal Gas Law

- Gas Laws
- Ideal Gas Law
- Dalton's Law of Partial Pressures
- Mole Fractions

Relating Volume \& Temperature

Relating Volume \& Temperature

Avogadro's Principle

Equal volumes of different gases at the same temperature and pressure contain equal numbers of particles.

$\mathrm{He}(4 \mathrm{~g})$
$\mathrm{NH}_{3}(17 \mathrm{~g})$

Standard Temperature \& Pressure (STP)

$0^{\circ} \mathrm{C}(273 \mathrm{~K})$ and 1 atm for gases
One mole of any gas particles will occupy 22.4 L of space at STP.
22.4 Liter Container

Ideal Gas Equation

$$
P V=n R T
$$

$\mathrm{P}=$ pressure (atm)
$\mathrm{V}=$ volume (L)
$n=$ number of moles
$\mathrm{R}=$ Gas constant ($0.0821 \mathrm{~L} \bullet a t m \bullet \mathrm{~K}^{-1} \bullet \mathrm{~mol}^{-1}$)
$\mathrm{T}=$ temperature (K)

Example \#1: Ideal Gas Equation

A 8.5 L tank contains Helium gas at 16.9 atm and $25^{\circ} \mathrm{C}$. How many moles of He are available for making balloons?
$P V=n R T$

Example \#2: Ideal Gas Equation

If all of the helium is used to fill 1.5 L red balloons at 0.99 atm and $32^{\circ} \mathrm{C}$, how many balloons will you end up with?

Example \#3: Ideal Gas Equation

An unknown gas is collected in an 850.0 mL vessel at 1.02 atm and $23^{\circ} \mathrm{C}$. The evacuated vessel has a mass of 138.45 g and the vessel and gas have a combined mass of 140.12 g . Find the molar mass of the gas.

Example \#4: Ideal Gas Equation

An unknown gaseous hydrocarbon has a density of $3.24 \mathrm{~g} / \mathrm{L}$ at 1.00 atm and $28^{\circ} \mathrm{C}$. Find its molar mass.

The Combined Gas Law

If the pressure, volume or temperature of a system changes, but the number of moles remains the same, the combined gas law equation can be derived from the ideal gas law equation in order to solve the problem.

$$
\begin{aligned}
& P_{i} V_{i}=n R T_{i} \\
& \frac{P_{i} V_{i}}{T_{i}}=n R
\end{aligned} \quad \frac{P_{i} V_{i}}{T_{i}}=\frac{P_{f} V_{f}}{T_{f}} \frac{P_{f} V_{f}=n R T_{f}}{T_{f}}=n R
$$

$\frac{P_{i} V_{i}}{T_{i}}=\frac{P_{f} V_{f}}{T_{f}}$ Example: Combined Gas Law

A cylinder of gas is kept at a constant volume as the temperature increases from $24.1^{\circ} \mathrm{C}$ to $326.4^{\circ} \mathrm{C}$. If the initial pressure is 1.01 atm , what is the final pressure in mm Hg ?

Dalton's Law of Partial Pressures

"For a mixture of gases in a container, the total pressure exerted is the sum of the pressures that each gas would exert if it were alone." ~ Dalton, 1803

$$
P_{\text {total }}=P_{1}+P_{2}+P_{3}+\ldots
$$

Example: Partial Pressures

100.8 g of O_{2} and 289.8 g of N_{2} are pumped into a 6.00 L SCUBA tank that is kept at $20^{\circ} \mathrm{C}$.
(a) Find the partial pressure of each gas.
(b) Find the total pressure in the tank.

Calculating Mole Fractions

Mole Fraction - the percent composition by moles of a single component in a mixture, represented in its decimal form.

$$
\frac{\text { Moles of one component }\left(n_{\mathrm{A}}\right) \text { in a mixture }}{\text { Sum of the moles of all components in the mixture }}
$$

$$
\frac{n_{A}}{n_{A}+n_{B}+n_{C}+n_{D}+\cdots+n_{Z}}
$$

$x_{1}=\frac{n_{1}}{n_{1}+n_{1}+n_{c}+n_{0}+\cdots+n_{1}}$

 Example 1: Mole Fraction

 Example 1: Mole Fraction}

Find the mole fraction of each component in a gaseous solution that contains:
$6.70 \mathrm{~mol} \mathrm{He}, 2.50 \mathrm{~mol} \mathrm{Ar}$ and $1.60 \mathrm{~mole} \mathrm{Cl}_{2}$

$X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}+n_{\mathrm{C}}+n_{\mathrm{D}}+\cdots+n_{\mathrm{Z}}}$

 Example 2: Mole Fraction

 Example 2: Mole Fraction}

A gaseous solution contains $\mathrm{Ne}, \mathrm{H}_{2}$ and He . The mole fractions of Ne and H_{2} are known to be 0.233 and 0.478 , respectively. What is the mole fraction of He ?

Mole Fractions \& Partial Pressures

You can find the partial pressure of any component in a gas mixture by multiplying the total pressure by its mole fraction.

The mole fraction of $\mathrm{O}_{2}(\mathrm{~g})$ in a container at 0.97 atm is found to be 0.210 . What is the partial pressure exerted by $\mathrm{O}_{2}(\mathrm{~g})$?

$$
P_{\mathrm{O}_{2}}=X_{\mathrm{O}_{2}} \bullet P_{\text {total }}
$$

$\mathrm{H}_{2} \mathrm{O}_{2(a q)}+\mathrm{NaClO}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{O}_{2(g)}$

Collecting Gases Over Water

A 0.129 g sample of an unknown gas was collected over water at $25.0^{\circ} \mathrm{C}$ and 1.01 atm . The collection cylinder contained 37.45 mL of gas after the sample was released. The vapor pressure of water is 23.76 mm Hg at $25.0^{\circ} \mathrm{C}$. Find the molar mass of the unknown gas.

Step 1: Convert mm Hg to atm.
Step 2: Find the partial pressure of the unknown gas.
Step 3: Find the moles of the gas ($\mathrm{PV}=\mathrm{nRT}$).
Step 4: Determine molar mass.

