3.5 Kinetic Molecular Theory

- KMT
- Maxwell-Boltzmann Distribution
- Kinetic Energy

Kinetic Molecular Theory

- Gases consist of particles (molecules and/or individual atoms) that are in continuous random movement.
- Total volume is negligible when compared to the volume of the system.
- Ideal Gas Law assumes that the volume of the gas particles in a system is zero.
- Coulombic forces of attraction or repulsion do not exist between gas particles.

Kinetic Molecular Theory

- Collisions experienced by gas particles are elastic (Kinetic Energy is Conserved.)

$$
\Sigma K E_{\text {initial }}=\Sigma K E_{\text {final }}
$$

Kinetic Molecular Theory

- The average KE of the gas particles in a system is proportional to the absolute temperature.
- The gas particles in any system that is kept at the same temperature will have the same average KE.
- Average KE in system 1 = average KE in system 2.

Kinetic Energy of Gas Molecules

- Translational Energy
- Gas molecules move through space in straight lines (no attractive forces)
- Rotational Energy
- Vibrational Energy

Most of a gas particle's KE is related to its translational velocity.

Maxwell-Boltzmann Distribution, Temp \& Pressure

Kinetic Energy \rightarrow

Maxwell-Boltzmann Distribution, Temp \& Pressure

- The average KE of the particles in a system increases as the temperature increases.
- At any temperature, there is a large range of kinetics.
- At any given temperature, the particles with less KE exert a lower pressure and the particles with more KE exert a higher pressure.
- The total pressure exerted by the gas particles in a system is an average.

KE, Mass \& Velocity of a Single Gas Particle

$K E=1 / 2 m v^{2}$

$v=$ velocity of a specific gas particle (m/s)
$m=$ mass of that particle (kg)

Molar Mass \& Molecular Speed (@25º

Molar Mass \& Molecular Speed \& Temperature

- At any given temperature, the average $K E$ of all gas particles is the same.
- Gases with smaller molar masses will have higher average velocities.
- Gases with larger molar masses will have lower average velocities.

3.6 Deviation from Ideal Gas Law

- Real vs. Ideal Gases

All Real Gases Do Not Behave Ideally When...

- Under high pressures ($\mathrm{P}>5 \mathrm{~atm}$)
- At low temperatures

Under such conditions, the ideal gas equation

$$
P V=n R T
$$

does not make accurate predictions.

PV/RT vs. P for 1.0 mole of Ideal Gas

PV/RT vs. P for 1.0 mole of Different Gases at Constant T

Volume Adjustment for Gases Under High Pressure

Volume occupied by

Pressure Adjustment for Gases Under High Pressures (low volume)

- When gas particles are very close together, they pressure they exert may be less than what the Ideal Gas equation would predict.
- Neighboring molecules exert forces of attraction on one another when they are very close together.
- Such forces pull a gas molecule in the direction opposite to its motion.
- This reduces the pressure resulting from impacts with the walls of the container.

Pressure Adjustment for Gases Under High Pressures (low volume)

Low Pressure System High Pressure System

Van der Waals Equation

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

$P=$ actual or measured pressure (atm)
$n=$ moles of gas
a and $b=$ constants for the specific gas in question
$V=$ actual or measured volume (L)
$T=$ temperature (K)
$R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$

PV/RT vs. P for 1.0 mole of $\mathbf{N}_{2}(\mathrm{~g})$ at Different Temperatures

Gases do not Behave Ideally at Low Temperatures

- The Ideal Gas law assumes that gases experience no intermolecular forces of attraction.
- At high temperatures, the kinetic energy of gas particles overcome any intermolecular forces of attraction.
- At low temperatures, gas particles move slower and are closer together. Attractions between molecules exist under these conditions.

Non-Ideal Behavior \& Condensation

- IMFs increase as the distance between particles decreases.
- Can lead to condensation at low T and high P.
- This applies to all gases.

