$\qquad$
$\qquad$

## Unit 3.7 \& 3.8

## Solutions \& Mixtures / Representations of Solutions

1. Draw one representation that shows the intermolecular interactions between $\mathrm{NH}_{3}$ and water and another that shows the intermolecular interactions between $\mathrm{SbH}_{3}$ and water. Use your representations to help explain why $\mathrm{NH}_{3}$ has a higher solubility in water than $\mathrm{SbH}_{3}$.
2. Potassium bromide is least soluble in which of the two liquids from each set below. Justify your choice in each case.
(i) $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CH}_{4}$
(ii) $\mathrm{CH}_{3} \mathrm{OH}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(iii) $\mathrm{NH}_{3}$ or $\mathrm{Br}_{2}$
3. A 1.34 mole sample of LiCl dissolves in water. The volume of the final solution is 0.86 L . Find the molarity of the solution.
4. A 9.98 g sample of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is dissolved in enough water to produce a 1395 mL solution. What is the molarity of the solution?
$\qquad$
$\qquad$
5. A 251 mL sample of 0.45 M HCl is added to 455 mL of distilled water. What is the molarity of the final solution?
6. How many fluorine atoms are in 750.0 mL of a 0.500 M HF solution?
7. Suppose you needed to prepare 100.0 mL of 1.05 M NaOH using 1.50 M NaOH , distilled water and a 100 mL graduated cylinder. How would you do this?
8. Find the mole fraction of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, in a solution that contains 2.1 moles of glucose and 55.49 moles of water.
9. A rigid 5.5 L sealed vessel contains 0.350 moles $\mathrm{N}_{2}(\mathrm{~g}), 0.125$ moles $\operatorname{Ar}(\mathrm{g})$ and 0.110 moles $\mathrm{He}(\mathrm{g})$. Find the mole fraction of each gas.
10. A gaseous solution contains $41.0 \% \mathrm{O}_{2}$ and $59.0 \% \mathrm{~N}_{2}$ by mass. Find the mole fraction of each substance in the solution.
