

Unit 4 Chemical Reactions

4.1 Introduction to Reactions 4.2 Net Ionic Equations 4.3 Representations of Reactions 4.4 Physical and Chemical Changes

Physical & Chemical Changes

Balancing Chemical Equations

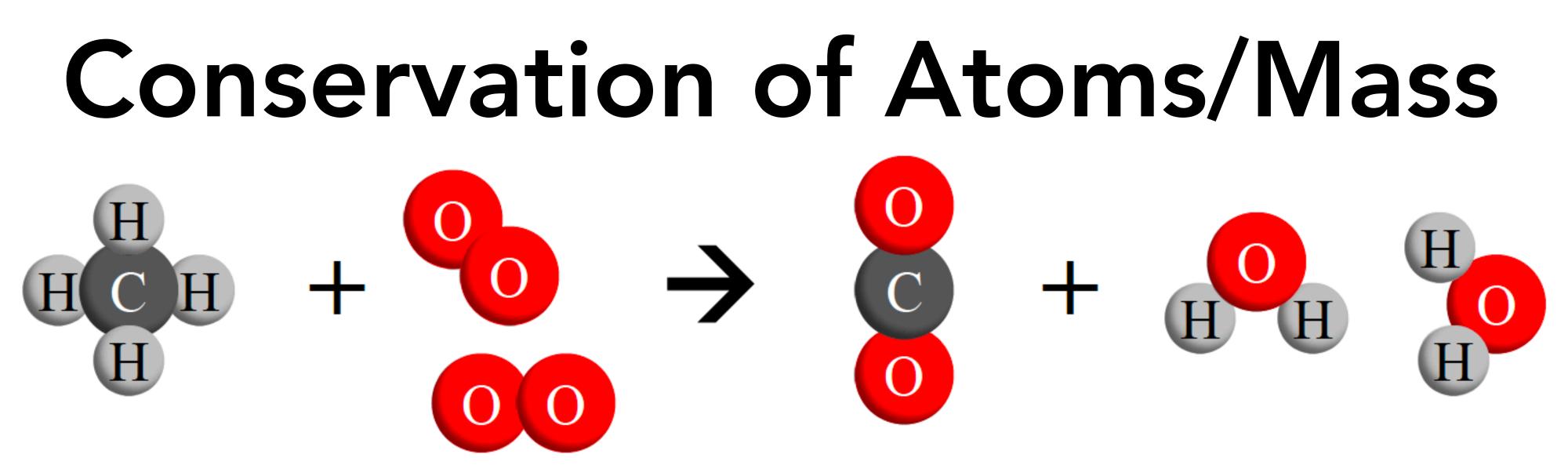
Chemical vs. Physical Processes

• Physical Processes

- Involve changes in intermolecular interactions.
- Properties change but the composition remains the same (phase changes, formation of mixtures)

• Chemical Processes

- Involve the breaking and/or formation of chemical bonds
 - Temp changes, production of light, formation of a gas, formation of a precipitate, changes in color.



$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

- C: 12.01 amu = 12.01 amu
- H: 4(1.01) amu = 4.04 amu


O: 4(16.00) amu = 64.00 amu

80.05 amu

- C: 12.01 amu = 12.01 amu
- H: 4(1.01) amu = 4.04 amu
- O: 4(16.00) amu = 64.00 amu

80.05 amu

Balancing Chemical Equations

Write the balanced **net ionic equation** for the reaction that takes place when an aqueous solution of barium nitrate is added to an aqueous solution of sodium sulfate and a barium sulfate precipitate forms.

Net Ionic vs. Complete Ionic Equations

Net Ionic Equation

Only shows the reaction that actually took place.

reaction.

Molecular Equation

Shows all of the species that are present.

(reacting species and spectator ions.)

- $Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \rightarrow BaSO_{4(s)}$
- Normally used when dealing with a problem that only involves the precipitation

- $Ba(NO_{3})_{2(aq)} + Na_{2}SO_{4(aq)} \rightarrow 2 NaNO_{3(aq)} + BaSO_{4(s)}$ Normally used when it is necessary to identify all of the species in a system

4.5 Stoichiometry

Predicting the Mass of Products & Reactants

• Limiting Reactant

• % Yield

Predicting Mass of Products

methane is burned in excess O₂(g)?

What mass of water is produced when 246.4 g of

Predicting Mass of Products

- - Write a balanced chemical equation.
 - Find Masses of CO₂ and Fe

• How many grams of CO₂ and Fe are produced when 114 g of carbon monoxide gas is added to a vessel containing excess hot iron (III) oxide?

Predicting Mass of Reactants

•What mass of sodium bicarbonate is needed to produce 32 g of Na₂CO₃?

- $2 \operatorname{NaHCO}_{3(s)} \rightarrow \operatorname{Na}_2 \operatorname{CO}_{3(s)} + \operatorname{H}_2 \operatorname{O}_{g} + \operatorname{CO}_{2(g)}$

Limiting Reagent

- Limiting Reagent
- The reactant that is used up limits how far the reaction will proceed.
- **Excess Reactant**

If you have set quantities of two different reactants, one will get used up and some amount of the other will be leftover.

• The reactant that is leftover when the reaction is complete.

Limiting Reagent

- What is the limiting reactant when 28 g of glucose reacts with 14 g of oxygen gas?
- What mass of CO₂ is produced?

Percent Yield

• Find the percent yield if only 15 g of CO₂ were produced in the previous problem.

%Yield = $\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100$

Reactions in Solution

• A 200.0 mL solution of 1.0 M Pb(NO₃)₂ is added to a 200.0 mL solution of 1.5 M Nal and a solid Pbl₂ precipitate forms. Find the maximum mass of $Pbl_2(s)$ that could be produced. $Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$