

Unit 5 Kinetics

5.1 Reaction Rates 5.2 Introduction to Rate Law

Reaction Rates

• The Order of Reactions

Rate Laws

Kinetics - The Study of Reaction Rates

- The rate of a reaction can be viewed 3 ways:
 - 1. The rate of disappearance of a reactant.
 - 2. The rate of appearance of a product.
 - 3. The rate at which the overall reaction proceeds.

- All reaction rates are found by looking at the change in concentration over a period of time.
- Reaction rate is ALWAYS positive.

Time

Rate Law

The rate of the overall reaction

Rate = $k [A]^m \cdot [B]^n$

- m = reaction order in terms of A
- n = reaction order in terms of B

$A + B \rightarrow C + D$

Rate = rate of disappearance of reactants (concentration/time) k = rate constant, or proportionality constant (temp dependent)

Reaction Order Reaction order CANNOT be predicted from the balanced equation. They can only be found experimentally.

Reaction orders may be: • Zero Order • First Order Second Order

Zero Order Reactions

Doubling the concentration of a reactant has no affect on the reaction rate.
Zero order

Rate = $k[A]^0$ or ... Rate = k

Ze	ero order
rate	
	Concentration

First Order Reactions

Doubling the concentration of that species doubles the reaction rate. (Changes in concentration result in proportional changes in rate.)
First order

Rate = $k[A]^1$

Second Order Reactions

Doubling the concentration the reaction rate.

Rate = $k[A]^2$

• Doubling the concentration of a reactant quadruples (squares)

Concentration

Overall Order for a Reaction

 To find the overall order of a reaction you simply add the exponents in the rate law.

• Overall order of the reaction = m + n

$Rate = k[A]^{m}[B]^{n}$

Units for k - The Rate Constant

Order of Reaction	Basic Formula	Units for k
0	Rate = k	Ms-1
1	Rate = $k[A]$	
2	Rate = $k[A]^2$	
3	Rate = $k[A]^3$	

Example: Initial Rates Method

 Three experiments were conducted at a specific temperature for the following reaction. $2 \operatorname{NO}_{(g)} + 2 \operatorname{H}_{2(g)} \rightarrow \operatorname{N}_{2(g)} + 2 \operatorname{H}_2 \operatorname{O}_{(g)}$

Experiment	[NO] _{initial}	[H ₂]initial	Rateinitial
1	0.20	0.30	0.0900
2	0.10	0.30	0.0225
3	0.10	0.20	0.0150

• Find the Rate Law, k and the overall order for the reaction.

Example 2: Initial Rates Method $\mathbf{B}_{(aq)} + \mathbf{C}_{(aq)} \rightarrow \mathbf{D}_{(aq)} + \mathbf{E}_{(aq)}$ (colorless) (green) (colorless) (colorless)

Experiment	[B] _{initial}	[C]initial	Rateinitial
1	0.10	0.10	4.2 x 10-4
2	0.10	0.20	8.3 x 10-4
3	0.20	0.10	8.3 x 10-4

• Find the Rate Law, k and the overall order for the reaction.

Reaction Rates Affected by Collisions & Catalysts

- Reaction rates increase in the presences of a catalyst (provide an alternate reaction pathway).
- Reaction rates increase when collision rates increase.
 - increase in concentration of liquid or gas reactants.
 - increases in the surface area of the reactants in the solid phase
 - temperature increases
 - when temperature increases, average kinetic energy increases (KE = 1/2mv²)
 - collision rate increases as velocity increases.

5.3 Concentration Changes Over Time

Integrated Rate Laws

• Half Life Reactions (1st order)

Zeroth Order Integrated Rate Law

This equation

 $[A]_{o}$ = the initial concentration (at t = 0s) $[A]_{t}$ = the concentration after some period of time

Rate = $\frac{-\Delta[A]}{\Lambda t} = k[A]^\circ = k$

can be integrated with calculus to produce...

$[A]_{t} - [A]_{0} = -kt$

Zeroth Order Integrated Rate Law $[A]_t - [A]_0 = -kt$ can be rearranged to give...

A plot of [A], vs. t produces a straight line for 0th order reactions This is used to determine if a reaction is zeroth order, as a straight line will only occur if the reaction is zeroth order.

 $[A]_t = (-k)t + [A]_0$ $\uparrow \qquad \uparrow \qquad \uparrow$ v = mx + b

[A]_t vs. t for 0th Order Reactions

Time

$CH_3CH_2OH_{(g)} \rightarrow CH_3CHO_{(g)} + H_{2(g)}$

A plot of concentration vs. time will only produce a straight line for zero order reactions, as the rate does not change when the concentration changes.

Example: Zeroth Order Reactions

• Using the data provided, find the rate law and the rate constant.

Time (s)	[A] (<i>M</i>)
0.0	1.50
45.0	0.90

time

Example: Zeroth Order Reactions

- Rate law: We know it's a zeroth order reaction because the plot of [A]_t vs. t gives a straight line.
- $A \rightarrow B + C$ tells us that A is the only reactant.

The Rate Law Rate = $k[A]^{\circ}$ Rate = k

Example: Zeroth Order Reactions

• To find k, use data at t = 0 and t = 45.0 s

 $-kt = |A|_t - |A|_0$

$k = -\frac{[A]_t - [A]_0}{0.90M - 1.50M}$ 45.0 s

$k = 1.33 \times 10^{-2} M/s$

First Order Integrated Rate Law

This equation

 $[A]_{o}$ = the initial concentration (at t = 0s)

- Rate = $\frac{-\Delta[A]}{\Delta t} = k[A]$
- can be integrated with calculus to produce...
 - $\ln[A]_{t} \ln[A]_{0} = -kt$
- $[A]_{,}$ = the concentration after some period of time

First Order Integrated Rate Law $\ln[A]_{t} - \ln[A]_{0} = -kt$ can be rearranged to give...

A plot of $\ln[A]_t$ vs. *t* produces a straight line for 1^{st} order reactions. This is used to determine if a reaction is 1st order, as a straight line will only occur if the reaction is 1st order.

$\ln[A]_{t} = (-k)t + \ln[A]_{0}$ $\uparrow \qquad \uparrow \qquad \uparrow$ v = mx + b

In[A]_t vs. t for 1st Order Reactions

time

Example: First Order Reactions $A \rightarrow B + 2 D$

Ex1) Using the data provided, find:

1	

Time (s)	[A] (<i>M</i>)
0.0	0.020
5.0 x 10	0.017
1.0 x 10 ²	0.014
1.5 x 10 ²	0.012
2.0 x 10 ²	0.010

- a) The rate law.
 - **b)** The rate constant.
- c) [A] at time = $5.0 \times 10^2 \text{ s}$.

Example: First Order Reactions

a) Find the rate law.

\checkmark A \rightarrow B + 2 D tells us that A is the only reactant.

The Rate Law Rate = k[A]

 \checkmark We know it is a 1st order reaction, because a plot of ln[A], vs. t gives a straight line.

Example: First Order Reactions

b) To find k, use data at t = 0 and some other time.

 $-kt = \ln[A]_{t} - \ln[A]_{t}$

 $k = 3.3 \times 10^{-3} \mathrm{s}^{-1}$

$k = -\frac{\ln[A]_{t} - \ln[A]_{0}}{\ln[A]_{0}} = -\frac{\ln(10.017 - \ln(10.020))}{\ln(10.017 - \ln(10.020))}$ 5.0×10 s

Example: First Order Reactions c) To find [A] at 500 s, use data at t = 0

- $\ln[A]_{t} \ln[A]_{o} = -kt$
 - $\ln[A]_{t} = -kt + \ln[A]_{0}$ $\ln[A]_{500} = -0.0033 s^{-1}(5.0 \times 10^2 s) + \ln 0.020$
- $[A]_{500} = e^{(-0.0033 \times 500 + \ln 0.020)}$
 - $[A]_{500} = 3.8 \times 10^{-3} M$

Example #2: First Order Reactions

 Data from an experiment which examined the change in concentration over time for a first order process at 25°C was used to put the graph below. Sketch a line that shows the approximate results that would be expected if the same experiment was repeated at a lower temperature.

time (s)

800

Example: Half Life for 1st Order Reactions Step 1. Find k

slope = $\frac{\Delta y}{\Delta x} = \frac{-4.93 - (-3.91)}{600 \text{ s} - 0 \text{ s}} = \frac{-1.02}{600 \text{ s}}$ $= -1.70 \times 10^{-3} \mathrm{s}^{-1}$

$k = -slope = 1.70 \times 10^{-3} s^{-1}$

Example: Half Life for 1st Order Reactions

Step 2. Find the half life $-kt = \ln[A] - \ln[A]$ $t = -\frac{\ln[A]_t - \ln[A]_o}{t}$ k $t_{\frac{1}{2}} = -\frac{\ln(0.5) - \ln(1)}{1.70 \times 10^{-3} \text{ s}^{-1}}$ $t_{1/2} = 408 \text{ s}$

The half-life is inversely proportional to the rate constant, k. If k is small, the rate is slow and the half-life is long.

For half-life problems, set the initial concentration to be 1 M, and the concentration after one half-life to be 0.5 M.

Half Life for 1st Order Reactions Deriving the half-life equation for first order processes

These equations can also be used for any radioactive decay problems, as those processes are always 1st order.

Example 2: Half Life for 1st Order Reactions Ex2) Which of the following processes has the shorter half-life? Justify your answer.

Process	Rate Law	Rate Constant
1	Rate = k_1 [AB]	$k_1 = 428 \text{ min}^{-1}$
2	Rate = k_2 [BC]	$k_2 = 296 \text{ min}^{-1}$

- Process 1 has a shorter half-life.
 - both processes are first order
 - Process 1 occurs at a faster rate when both systems share the magnitude.

same initial concentrations, as its rate constant has a larger
2nd Order Integrated Rate Law

This equation

 $[A]_{a}$ = the initial concentration (at t = 0s)

- Rate = $\frac{-\Delta[A]}{\Lambda t} = k[A]^2$
- can be integrated using calculus to give...
 - $\frac{1}{[A]_t} \frac{1}{[A]_o} = kt$
- $[A]_{t}$ = the concentration after some period of time

2nd Order Integrated Rate Law $\frac{1}{[A]_t} - \frac{1}{[A]_o} = kt$

 A plot of 1/[A]_t vs. t will give a straight line for 2nd order reactions. This is used to determine if a reaction is 2nd order, as a straight line will only occur if the reaction is 2nd order.

1/[A]_t vs. t for 2nd Order Reactions

time

Example: Rate Laws $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$

 Using the data provided, find the rate law and the rate constant

Time (s)	[NO ₂]
0.0	0.070
1.0 x 10 ²	0.015
2.0x10 ²	0.0082
3.0x10 ²	0.0057

Example: Rate Laws $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$

- Find the rate law:
 - We know it's a 2nd order reaction because a plot of 1/[A]_t vs.t gives a straight line.
 - $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$ tells us that NO₂ is the only reactant.

The Rate Law Rate = $k[NO_2]^2$

• To find k, use data for t = 0 and some other time. $kt = \frac{1}{[A]_t} - \frac{1}{[A]_o} = \frac{1}{0.015M} - \frac{1}{0.070M}$ $k = 0.52 \ M^{-1} \mathrm{s}^{-1}$

- $k = \frac{0.015M \quad 0.070M}{1.0 \times 10^2 \,\mathrm{s}}$

Example: 2nd Order Reactions

 Data from an experiment which examined the change in concentration over time for a second order process at 25°C was used to plot the graph below. Sketch a line that shows the approximate results that would be expected if the same experiment was repeated at a higher temperature.

 $2 AB \rightarrow A_2 + B_2$

The rate is faster, so [AB] decreases more rapidly.

5.4 Elementary Reactions 5.7 Intro to Reaction Mechanisms 5.8 Reaction Mechanism & Rate Law 5.9 Steady-State Approximation

Most reactions <u>do not</u> happen in one step.

 $2NO_{(q)} + C$

Mechanism:

step 1: $NO_{(g)} + NO_{(g)} \rightarrow N_2Q_{2(g)}$ fast step 2: $N_2Q_{2(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$

 Reaction mechanisms are the series of steps that sum to the overall reaction.

Reaction Mechanisms

$$D_{2(g)} \rightarrow 2NO_{2(g)}$$
 N_2O_2 is a reaction intermediate

slow

$2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$

Determining a Rate Law

- The rate law for an overall reaction can only be found experimentally.
- Consider this overall reaction.

$NO_{2(q)} + CO_{(q)} \rightarrow NO_{(q)} + CO_{2(q)}$

Rate = $k[NO_2]^2$

Rate = $k[NO_2]^2[CO]^0$

Determining a Rate Law $NO_{2(g)} + CO_{(g)} \rightarrow NO_{(g)} + CO_{2(g)}$ But rate laws for elementary steps are predictable! Same rate law as the Rate = $k_1[NO_2]^2$ ---overall reaction! **FAST** Step 2. $NO_{3(g)} + CO_{(g)} \rightarrow NO_{2(g)} + CO_{2(g)}$ Rate = $k_2[NO_3][CO]$ Adding CO does not For any elementary step... $aA + bB \rightarrow dD + eE Rate = k[A]^{a}[B]^{b}$

- **SLOW** Step 1. $2NO_{2(g)} \rightarrow NO_{(g)} + NO_{3(g)}$

NO₃ is soon as it is produced

consumed as increase the rate, making it zero order in the overall reaction

Determining a Rate Law Overall Reaction: $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$

Step 1. $NO_{(g)} + O_{2(g)} \rightleftharpoons NO_{3(g)}$

$Rate_{(fwd)} = k_1[NO][O_2]$ Step 2. $NO_{3(q)} + NO_{(q)} \rightarrow 2NO_{2(q)}$ Rate = $k_2[NO_3][NO]$

This reaction proceeds at the rate of the SLOW STEP, but NO_3 is an intermediate so its concentration is unknown. To solve this problem, the rate law must be modified.

FAST, reversible

 $Rate_{(rev)} = k_{-1}[NO_3] \quad \leftarrow rate_{forward} = rate_{reverse}$ **SLOW**

Determining a Rate Law Overall Reaction: $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$ Step 1. $NO_{(g)} + O_{2(g)} \rightleftharpoons NO_{3(g)}$ FAST, reversible

- - $k_1[NO][O_2] = k_1[NO_3]$ rate_{forward} = rate_{reverse} $[NO_3] = k_1/k_1([NO][O_2])$
- Step 2. $NO_{3(q)} + NO_{(q)} \rightarrow 2NO_{2(q)}$
 - Rate = $k_2[NO_3][NO]$
 - Rate = $k_2(k_1/k_1([NO][O_2]))[NO]$
 - Rate = $k_3[NO]^2[O_2]$

SLOW

this gives a rate law with no intermediates

Determining a Rate Law

- are.
 - The rate law tells them what the slowest step is.
 - Then they try to determine the fast steps.
 - Though experimental detection of reaction intermediates, evidence is built to support proposed mechanisms.

 Chemists determine the rate law through experimentation. • They use the rate law to determine what the elementary steps

Rate Laws of Elementary Steps

Molecularity	Elementary Reaction	Rate Law	Order
<i>Uni</i> molecular	$A \rightarrow products$	Rate = $k[A]$	First order
<i>Bi</i> molecular	$A + A \rightarrow products$	Rate = $k[A]^2$	Second order
<i>Bi</i> molecular	$A + B \rightarrow products$	Rate = $k[A][B]$	Second order
<i>Ter</i> molecular	$A + A + A \rightarrow products$	Rate = $k[A]^3$	Third order
<i>Ter</i> molecular	$A + A + B \rightarrow products$	Rate = $k[A]^2[B]$	Third order
<i>Ter</i> molecular	$A + B + C \rightarrow products$	Rate = $k[A][B][C]$	Third order

Termolecular elementary reactions are very rare. The value of the rate constant, *k*, is temperature dependent.

Example: Rate Laws of Elementary Steps

The rate constants associated with the slowest elementary steps for two processes are given in the table below. Which process has the higher rate under standard conditions?

Process	Elementary reaction	Rate constant, k, at 25°C
1	$A + B \rightarrow products$	1.5 x 10 ⁻⁴ M/s
2	$C + D \rightarrow products$	2.7 x 10 ⁻⁶ <i>M/s</i>

Process 1 proceeds at a faster rate. Both are 2nd order and all reactants have 1.0 M concentrations. The rate constant for process 1 has a higher magnitude.

Example: Rate Laws of Elementary Steps

The rate laws associated with the slowest elementary steps for two processes are given below. Which process is most likely to proceed at a higher rate under standard conditions?

Process		
	1	
	2	

Process 2 is more likely to proceed at a faster rate. The slow step in Process 1 requires the simultaneous collision of three particles with sufficient energy and correct orientations.

Rate Law

Rate = $[A]^2[B]$ Rate = [C][D]

5.5 Collision Model 5.6 Reaction Energy Profiles 5.10 Multistep Reaction Energy Profiles

Factors Affecting Reaction Rates

Activation Energy, E_a

Collision Rate

- Collision Rate Increases...Poppers! Design of Experiment 1. As the concentration of reactants in the liquid or gas phase
 - increases.
 - 2. As the surface area of reactants in the solid phase increases.
 - 3. As temperature increases.

Not every collision triggers a chemical reaction! Molecules must collide with an orientation that can yield a reaction.

Reaction Energy Profile $AB + C \rightarrow A + BC$

Transition State A - Bち \bigcirc **Products** A + BC

Reaction Coordinate

E_a for Unimolecular Decomposition Reactions

- The energy required to break the bonds in the reactant is particle.
 - temperature increases.

obtained during the collision with a background or solvent

 $O_{3(q)} + M \rightarrow O_{2(q)} + O_{(q)} + M$ • For this reason, unimolecular decomposition rates increase as

Activation Energy (E_a)

• Reaction rates depend on the magnitude of E_a .

Generally a slower rate

Generally a faster rate, when at the same temperature

Generally, if less energy is required to get over the hump, more reactants will collide with enough energy.

In Summary

- All 3 of the following conditions must be met in order for a reaction to occur:
 - 1. There must be a collision.
 - 2. The collision must occur with an orientation that could cause a reaction.
 - 3. $E_{\text{collision}} \geq E_{\text{a}}$

Bonds in products bonds in reactants.

 ΔE is the energy lost or gained in a reaction. Also called the ΔH (enthalpy of reaction).

The E_a value changes for the reverse reaction.

The Arrhenius Equation $k = Ae^{-E_a/RT}$

- k = rate constant
- E_{a} = activation energy (J)
- $R = 8.314 \text{ J/mol} \cdot \text{K}$
- T = absolute temperature (K)
- A = a constant related to the frequency of collisions and the probability that the orientation could produce a reaction.

The Arrhenius Equation $k = Ae^{-E_a/RT}$

- The Arrhenius Equation shows that increasing the temperature increases the rate of a reaction.
 - 1. As the temperature increases, -E_a/RT becomes less negative and the rate constant, k, increases.
 - 2. As the rate constant, k, increases, the rate increases.

• A graph of ln[k] vs. 1/T produces a straight line. • The activation energy, E_{a} , can be determined after calculating the slope of the line.

slope = $-E_a/R$

- - the activation energy for the reaction.

Example: Arrhenius Equation • Data from a series of experiments conducted at different temperatures was used to produce the graph below. Find

> (x_2, y_2) 3.4 3.5 3.6 3.7 $1/T (1 \times 10^{-3} \text{ K}^{-1})$ 3.8

Example: Arrhenius Equation

$$\frac{-5 - (-1)}{(3.8 \times 10^{-3}) - (3.4 \times 10^{-3})}$$

 $slope = -1.0 \times 10^4 K$

 $E_{\rm a} = -(-1.0 \times 10^4 \,\text{K})(8.314 \,\text{J} \cdot \text{K}^{-1} \text{mol}^{-1})$ $E_{\rm a} = 83000 \,\text{J/mol} = 83 \,\text{kJ/mol}$

5.11 Catalysis

Acid-Base Catalysts

- Surface Catalysts
- Enzymes of Catalysts

Catalysis

- A catalyst increases the rate of a chemical reaction by providing an alternate reaction mechanism.
 - Lower activation energy and/or
 - Higher frequency of collisions with an orientation that could produce a reaction.
- Catalysts are added to the system.
 - There are there before the reaction starts and then they return when the reaction is complete.
 - The net concentration of the catalysts remains constant.

Catalysis - destruction of ozone

$CCl_{2}F_{2} \rightarrow CClF_{2} + Cl \quad (weaker C-Cl bond breaks 1st)$ CI• reacts $C|\bullet + O_3 \rightarrow O_2 + C|O\bullet$ with O_3 Cl• is back to $\mathsf{C}|\mathsf{O}\bullet + \mathsf{O}\bullet \to \mathsf{O}_2 + \mathsf{C}|\bullet$ react with another O₃ $O_3 + O = \frac{CI}{2O_2}$

Ozone Destruction Cycle 1

Catalysis and Activation Energy

$O_3 + O \bullet \longrightarrow 2O_2$

no catalyst

$O_3 + C \to C \to C \to O_2$

with a catalyst

E_a lowered for BOTH forward and reverse reactions. K_{eq} is the same at the same temperature, regardless of the presence of a catalyst.

Types of Catalysis (a few)

Acid-Base Catalysis

- A reactant gains or loses a proton (H⁺), which forms a new intermediate.
 - Acid-Catalyzed hydrolysis of esters

Enzymes

 Enzyme binds to the reactant(s) to form a new reaction intermediate.

Surface Catalysis (heterogeneous)

- The catalyst binds to or forms covalent bonds with a surface, thereby forming a new intermediate.
 - Catalytic Converters, hydrogenation of alkenes