

Unit 7

Equilibrium

7.1 Introduction to Equilibrium 7.2 Direction of Reversible Reactions 7.3 Reaction Quotient \& Equilibrium Constant

- Establishing Equilibrium
- Equilibrium Constants (K_{c} and K_{p})
- Reaction Quotients $\left(\mathrm{O}_{\mathrm{c}}\right.$ and $\left.\mathrm{Q}_{\mathrm{p}}\right)$

Dynamic Equilibrium

Most reactions do not go to completion.

- Here, all of the reactants do not get used up.
- The system reaches a dynamic state where reactants are continually turning into products, and products are continually turning back into reactants.

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftharpoons 2 \mathrm{NO}_{2(g)}
$$

Dynamic Equilibrium

$\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftharpoons 2 \mathrm{NO}_{2(g)}$

In this example, the system initially contains only reactants, $\mathrm{N}_{2} \mathrm{O}_{4}$, and eventually establishes equilibrium.

Dynamic Equilibrium

$\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$

In this example, the system initially contains only reactants, $\mathbf{N}_{2} \mathrm{O}_{4}$, and eventually establishes equilibrium.

Establishing Chemical Equilibrium

- When the rate of the forward reaction is greater than the rate of the reverse reaction, there is a net conversion of reactants into products.
- The reversible reaction is proceeding to the right.
- When the rate of the reverse reaction is greater than the the rate of the forward reaction, there is a net conversion of products into reactants.
- The reversible reaction is proceeding to the left.

Once Equilibrium is Established

- No observable changes occur even though...
- Forward and reverse reactions continue to take place.
- The rate of the forward reaction EQUALS the rate of the reverse reaction.
- Concentrations and/or partial pressures of all species remain constant, yet they will rarely be equal to one another.

Maintaining Equilibrium

Closed System

Volume Remains Constant

Temperature Remains Constant

The Equilibrium Constant (K_{eq})

Example: Equilibrium Expression $\left(\mathrm{K}_{\mathrm{c}}\right)$

Write the equilibrium expression, K_{c}, for:

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{~g}) \\
& K_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}
\end{aligned}
$$

Example: Equilibrium Expression $\left(K_{c}\right)$

Write the equilibrium expression, K_{c} for:

$$
\mathrm{NiO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightleftarrows \mathrm{Ni}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

- [NiO] has not changed.
- Concentration is measured in mol/L.
- Both pieces have the same density, so both contain the same number of particles per unit volume.

Example: Equilibrium Expression $\left(K_{c}\right)$

Write the equilibrium expression, K_{c} for:

$$
4 \mathrm{HCl}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

- Adding or taking away small amounts of water in a reaction that takes place in an aqueous solution does not affect the overall concentration of $\mathrm{H}_{2} \mathrm{O}$

Details About the Equilibrium Constant, K

- K indicates how far a reaction will proceed towards the products at a given temperature.
- Small K means little to no reaction
- Large K means the reaction goes to or near completion
- Intermediate K means significant amounts of reactants and products are present at equilibrium.

The Reaction Quotient (Q)

- The reaction quotient, Q_{c}, describes relative concentrations of products and reactants at any point in time.
- The expression for Q_{c} is the same as that for K_{c}.
- When the system is at equilibrium, $\mathrm{O}_{\mathrm{c}}=\mathrm{K}_{\mathrm{c}}$
- When $\mathrm{Q}_{\mathrm{c}}<\mathrm{K}_{\mathrm{c}}$: The reaction will tend toward the products
- When $\mathrm{Q}_{\mathrm{c}}>\mathrm{K}_{\mathrm{c}}$: The reaction

$$
\begin{gathered}
a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons d \mathrm{D}+e \mathrm{E} \\
Q_{\mathrm{c}}=\frac{[\mathrm{D}]^{d}[\mathrm{E}]^{e}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}
\end{gathered}
$$

For gases, K_{p} is often used

For gases, K_{p} is often used

- The partial pressure of a gas in a system is the pressure exerted by that specific gas.
- The partial pressures of all the gases in a system sum up to the total pressure in that system.
- 1 mole of one type of gas will exert the same pressure as 1 mole of a different type of gas, under the same conditions of volume and temperature.
- 2 moles of a gas will exert twice as much pressure.

Example: Equilibrium Constant (K_{p})

Write the equilibrium expression, K_{p}, for:

$$
\begin{gathered}
2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NOCl}^{(\mathrm{g})} \\
K_{p}=\frac{\left(P_{\mathrm{NOCl}}\right)^{2}}{\left(P_{\mathrm{NO}_{2}}\right)^{2}\left(P_{\mathrm{Cl}_{2}}\right)}
\end{gathered}
$$

You must use round brackets in the K_{p} expression.

Example: Equilibrium Constant (K_{p})

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftarrows \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})$

- At 1000 K , the equilibrium partial pressures for the reaction above are CH_{4} $=0.20 \mathrm{~atm}, \mathrm{H}_{2} \mathrm{~S}=0.25 \mathrm{~atm}, \mathrm{CS}_{2}=0.52 \mathrm{~atm}$ and $\mathrm{H}_{2}=0.10 \mathrm{~atm}$. What is K_{p} ?

Practice

For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=0.21$ at $100^{\circ} \mathrm{C}$. At a point during the reaction, $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.12 \mathrm{M}$ and $\left[\mathrm{NO}_{2}\right]=0.55 \mathrm{M}$. Is the reaction at equilibrium at that time? If not, in which direction is it proceeding?

Answer:

$$
Q_{c}=\left[\mathrm{NO}_{2}\right]^{2 /}\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=(0.55)^{2} /(0.12)=2.52
$$

$2.52 \neq 0.21$ so it is not at equilibrium, and since
$2.52>0.21$, the rxn must proceed to the LEFT, making more reactants to reach equilibrium.

7.4 Calculating the Equilibrium Constant

 7.5 Magnitude of the Equilibrium Constant7.6 Properties of the Equilibrium Constant

Example: Calculating K_{c}

A system establishes equilibrium at $500.0^{\circ} \mathrm{C}$ in accordance with the chemical equation below and the following concentrations were measured. Calculate the value of the equilibrium constant, K_{c}.

$$
\begin{aligned}
& {\left[\mathrm{N}_{2}\right]=1.50 \times 10^{-5} \mathrm{M}} \\
& {\left[\mathrm{H}_{2}\right]=3.45 \times 10^{-1} \mathrm{M}} \\
& {\left[\mathrm{NH}_{3}\right]=2.00 \times 10^{-4} \mathrm{M}}
\end{aligned}
$$

Example: Calculating K_{p}

A system establishes equilibrium at $485^{\circ} \mathrm{C}$ in accordance with the chemical equation below and the following partial pressures were measured. Calculate the value of the equilibrium constant, K_{p}.

$$
\begin{array}{ll}
{\left[\mathrm{H}_{2}\right]=0.035 \mathrm{~atm}} \\
{\left[\mathrm{I}_{2}\right]=0.045 \mathrm{~atm}} & \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g) \\
{[\mathrm{HI}]=0.280 \mathrm{~atm}} &
\end{array}
$$

What $K_{\text {eq }}$ Tells Us

$$
\begin{gathered}
2 \mathrm{HI}_{(g)} \rightleftharpoons \mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \\
K_{\mathrm{P}}=\frac{\left(P_{\mathrm{H}_{2}}\right)\left(P_{\mathrm{I}_{2}}\right)}{\left(P_{\mathrm{HI}}\right)^{2}}=0.0184 \text { at } 698 \mathrm{~K} \\
\begin{array}{c}
\left(\boldsymbol{P}_{\mathrm{HI}}\right)^{2}>\left(\boldsymbol{P}_{\mathrm{H},}\right)\left(\boldsymbol{P}_{\mathrm{t}}\right) \\
\text { Mostly Reactants }
\end{array}
\end{gathered}
$$

What $K_{\text {eq }}$ Tells Us

$$
\begin{gathered}
2 \mathrm{NO}_{(g)} \rightleftharpoons \mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \\
K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]}{[\mathrm{NO}]^{2}}=2.4 \times 10^{3} \quad \text { at } 2273 \mathrm{~K} \\
{[\mathrm{NO}]^{2} \ll\left[\mathbf{N}_{2}\right]\left[\mathrm{O}_{2}\right]} \\
\text { Mostly Products }
\end{gathered}
$$

What $K_{\text {eq }}$ Tells Us

$$
\begin{array}{ll}
K_{\mathrm{eq}} \gg 1 & \begin{array}{l}
\text { (mostly products) } \\
\text { (equilibrium lies far to the right) }
\end{array} \\
K_{\mathrm{eq}} \ll 1 & \begin{array}{l}
\text { (mostly reactants) } \\
\text { (equilibrium lies far to the left) }
\end{array} \\
K_{\mathrm{eq}} \approx 1 & \begin{array}{l}
\text { (} \sim \text { equal amounts of each) } \\
\text { (equilibrium lies in the middle) }
\end{array}
\end{array}
$$

Manipulating K \& Q

There are three ways in which K and Q can be manipulated.

1. Coefficient Rule
2. Reciprocal Rule
3. Multiple Equilibria Rule

Coefficient Rule

When coefficients are changed by a factor of $n, K_{\text {eq }}$ is raised to the power of n.

$$
2 \mathrm{~A}_{(g)}+\mathrm{B}_{(a q)} \rightleftharpoons 6 \mathrm{D}_{(a q)}
$$

$$
1 / 2(\mathrm{i})=(\mathrm{ii})
$$

$$
\mathrm{A}_{(g)}+1 / 2 \mathrm{~B}_{(a q)} \rightleftharpoons 3 \mathrm{D}_{(a q)}
$$

$$
K_{\mathrm{c}}^{\mathrm{i}}=\frac{[\mathrm{D}]^{6}}{[\mathrm{~A}]^{2}[\mathrm{~B}]}
$$

$$
K_{\mathrm{c}}^{\mathrm{ii}}=\frac{[\mathrm{D}]^{3}}{[\mathrm{~A}][\mathrm{B}]^{\frac{1}{2}}}=\left[\frac{[\mathrm{D}]^{6}}{[\mathrm{~A}]^{2}[\mathrm{~B}]}\right]^{\frac{1}{2}} \quad K_{\mathrm{c}} \mathrm{ii}=\left(K_{\mathrm{c}}\right)^{1 / 2}
$$

Reciprocal Rule

When a reaction is reversed, the new $K_{\text {eq }}$ value is the inverse of the old $K_{\text {eq }}$ value.

$$
\text { (i) } \begin{gathered}
2 \mathrm{~A}_{(g)}+\mathrm{B}_{(a q)} \rightleftharpoons 6 \mathrm{D}_{(a q)} \\
K_{\mathrm{c}}^{\mathrm{i}}=\frac{[\mathrm{D}]^{6}}{[\mathrm{~A}]^{2}[\mathrm{~B}]}
\end{gathered}
$$

$$
\begin{array}{r}
(\mathrm{i})^{-1}=(\mathrm{iii}) \quad 6 \mathrm{D}_{(a q)} \rightleftharpoons 2 \mathrm{~A}_{(g)} \\
K_{\mathrm{c}}^{\mathrm{iii}}=\frac{[\mathrm{A}]^{2}[\mathrm{~B}]}{[\mathrm{D}]^{6}}
\end{array}
$$

$$
6 \mathrm{D}_{(a q)} \rightleftharpoons 2 \mathrm{~A}_{(g)}+\mathrm{B}_{(a q)}
$$

$$
K_{\mathrm{c}}^{\mathrm{iiii}}=1 / K_{\mathrm{c}}{ }^{\mathrm{i}}
$$

Multiple Equilibria Rule

When two or more reactions are combined, the new $K_{\text {eq }}$ is the product of the $K_{e q}$ values from the individual reactions.

$$
\begin{aligned}
& \text { (i) } 2 \mathrm{~A}_{(g)}+\mathrm{B}_{(a q)} \rightleftharpoons 6 \mathrm{D}_{(a q)} \\
& \text { (iv) } 3 \mathrm{E}_{(a q)}+\mathrm{B}_{(a q)} \rightleftharpoons 2 \mathrm{~A}_{(g)}+\mathrm{F}_{(a q)} \\
& \text { (v) } 3 \mathrm{E}_{(a q)}+2 \mathrm{~B}_{(a q)} \rightleftharpoons 6 \mathrm{D}_{(a q)}+\mathrm{F}_{(a q)} \\
& \frac{[\mathbf{D}]^{6}}{[\mathbf{A}]^{2}[\mathbf{B}]} \times \frac{[\mathbf{A}]^{2}[\mathbf{F}]}{[\mathbf{E}]^{3}[\mathbf{B}]}=\frac{[\mathbf{D}]^{6}[\mathbf{F}]}{[\mathbf{E}]^{3}[\mathbf{B}]^{2}} \\
& K_{\mathrm{c}}^{\mathrm{i}} \mathbf{X} K_{\mathrm{c}}^{\mathrm{iv}}=K_{\mathrm{c}}{ }^{\mathrm{V}}
\end{aligned}
$$

7.7 Calculating Equilibrium Concentrations

- Calculating Equilibrium Partial Pressures \& Concentration
- ICE Charts

Warm-up: Calculating Equilibrium Partial Pressures

Suppose you start out with only $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ in a rigid container at $25^{\circ} \mathrm{C}$, and its initial partial pressure is recorded to be 0.784 atm . What are the partial pressures of each species when the system reaches equilibrium?

$$
\left(K_{p}=2.0 \times 10^{-42}\right)
$$

$$
2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(g)}
$$

Warm-up: Calculating Equilibrium Partial Pressures

$$
\left(K_{p}=2.0 \times 10^{-42}\right)
$$

$2 \mathrm{H}_{2} \mathrm{O}_{(g)} \rightleftharpoons 2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)}$

Initial	0.784	0	0
Change	$-2 x$	$+2 x$	$+x$
Equilibrium	$0.784-2 x$	$2 x$	x

Warm-up: Calculating Equilibrium Partial Pressures

 $\left(K_{p}=2.0 \times 10^{-42}\right)$$$
2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

Initial
Change
Equilibrium

0.784	0	0
$-2 x$	$+2 x$	$+x$
$0.784-2 x$	$2 x$	x

$$
K_{\mathrm{p}}=\frac{\left(P_{\mathrm{H}_{2}}\right)^{2}\left(P_{\mathrm{O}_{2}}\right)}{\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)^{2}}=\frac{(2 x)^{2}(x)}{(0.784-2 x)^{2}}
$$

$$
2.0 \times 10^{-42}=\frac{4 x^{3}}{(0.784)^{2}}<\begin{aligned}
& \text { When } K_{\mathrm{eq}}<1 \times 10^{-4}
\end{aligned} \begin{aligned}
& \text { you can usually ignore } \\
& \text { this }(x) \text { to avoid the } \\
& \text { difficult math. }
\end{aligned}
$$

Example: Calculating Equilibrium Concentrations

Find the equilibrium concentrations of all species if $0.194 \mathrm{~mol}^{\mathrm{m}} \mathrm{COCl}_{2}$ is allowed to come to equilibrium in a 5.8 L container at $25^{\circ} \mathrm{C}$. $\left(\mathrm{K}_{\mathrm{c}}=7.28 \times 10^{-38}\right)$

$$
\mathrm{COCl}_{2(g)} \rightleftharpoons \mathrm{CO}_{(g)}+\mathrm{Cl}_{2(g)}
$$

Initial	3.3×10^{-2}	0	0
Change	-x	+x	+x
Equilibrium	$3.3 \times 10^{-2}-\mathrm{x}$	x	x

$$
\mathrm{COCl}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{HCl}_{(a q)}
$$

7.8 Representations of Equilibrium 7.9 Introduction to Le Chatelier's Principle 7.10 Reaction Quotient \& Le Chatelier's Principle

Le Chatelier's Principle

When a system at equilibrium is subjected to a stress, the equilibrium will shift in order to reduce that stress.

The only three stresses are changes in:

1. Pressure
2. Concentration
3. Temperature

Stress from Increasing Pressure

If the pressure on a system at equilibrium is increased, Q changes and the reaction will proceed toward the side with fewer moles of gas to reduce the stress.

This changes the equilibrium concentrations, but it does not change the Equilibrium Constant (K_{eq}).

Stress from Increasing Pressure

Stress from Decreasing Pressure

If the pressure on a system at equilibrium is decreased, Q changes and the reaction will proceed toward the side with more moles of gas to reduce the stress.

This changes the equilibrium concentrations, but it does not change the Equilibrium Constant (K_{eq}).

Stress from Decreasing Pressure $\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(g)}$ Reaction proceeds this way

10 gaseous molecules

14 gaseous molecules

Stress from Increasing Concentration

If the concentration on a system at equilibrium is increased, Q changes and the reaction will proceed in the direction that will reduce the concentration of that species.

This increases the equilibrium concentrations, but it does not change the Equilibrium Constant (K_{eq}).

Adding more NH_{3} to the system

$\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$

Stress from Decreasing Concentration

If the concentration on a system at equilibrium is decreased, Q changes and the reaction will proceed in the direction that will increase the concentration of that species.

This increases the equilibrium concentrations, but it does not change the Equilibrium Constant (K_{eq}).

Stress from Dilution

If solvent is added to a system at equilibrium, Q changes and the reaction will proceed toward the side with more particles to reduce that stress.

This increases the equilibrium concentrations, but it does not change the Equilibrium Constant (K_{eq}).

Stress from Dilution

Reaction will proceed this way

13 aqueous HF

8 aqueous HF

Stress from Changing Temperature

This is the only stress that changes the equilibrium constant ($K_{\text {eq }}$)
$\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(g)}+$ heat
Cooling (taking heat away) shifts the equilibrium in the direction that produces heat.
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}+$ heat
Adding heat (increasing the temperature) shifts the equilibrium in the direction that absorbs heat.

Example: Stress from Temperature Changes

A system represented by the chemical equation below is in a state of equilibrium at $25^{\circ} \mathrm{C}$. Describe the color change that would occur if the temperature of the system increases to $75^{\circ} \mathrm{C}$.
$\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) \quad \Delta H=+57.2 \mathrm{~kJ}$
Colorless
Brown

- When heat is added, the reaction will proceed to the right.
- The system would become a darker shade of brown, because $\left[\mathrm{NO}_{2}\right]$ would increase.

Example: Stress from Temperature Changes

A system represented by the chemical equation below is in a state of equilibrium at $5^{\circ} \mathrm{C}$. If the temperature of the system increases to $99.0^{\circ} \mathrm{C}$, will the pH increase, decrease or remain the same?

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}_{(a q)}^{-}+\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+} \quad \Delta H=+1.2 \mathrm{~kJ}
$$

- When heat is added, the reaction will proceed to the right.
- The pH would decrease, because $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$would increase.

Example: Stress from Temperature Changes

A system represented by the chemical equation below is in a state of equilibrium in a cylinder at $25.00^{\circ} \mathrm{C}$. If the volume of the cylinder was increased, would the temperature increase, decrease or remain the same while the system attempts to re-establish equilibrium? Justify your answer.

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta H=-92 \mathrm{~kJ}
$$

- The temperature will decrease.
- The rate of the reverse reaction would be greater than the rate of the forward reaction.
- The reverse reaction is endothermic.

7.11 Introduction to Solubility Equilibria 7.12 Common-Ion Effect

- The Solubility Product Constant (K_{sp})
- Predicting Precipitates

Saturation \& Equilibrium

- Saturated Solution
- The solvent has dissolved the maximum amount of solute that can at a certain temperature, and some solid solute remains on the bottom.
- A solution is at equilibrium when it is saturated.

The Solubility Product Constant ($\mathrm{K}_{\text {sp }}$)

- This is $\mathrm{K}_{\text {sp }}$ for ionic compounds in water.

$$
\begin{aligned}
& \mathrm{CaCO}_{3(s)} \rightleftharpoons \mathrm{Ca}^{2+}{ }_{(\text {aq) }}+\mathrm{CO}_{3}{ }^{2-}{ }_{(q q)} \\
& K_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] \\
& \mathrm{PbCl}_{2(s)} \rightleftharpoons \mathrm{Pb}^{2+}{ }_{(a q)}+2 \mathrm{Cl}_{(a q)} \\
& K_{\text {sp }}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}
\end{aligned}
$$

$\mathrm{K}_{\text {sp }}$ values generally range from about 1×10^{-3} to 1×10^{-54} or compounds that are considered to be insoluble. ONLY DEPENDENT ON TEMPERATURE

Solubility Rules

All salts containing $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}{ }^{+}$or $\mathrm{NO}_{3}-$ are soluble in water.
$\mathrm{K}_{\text {sp }}>1$ for all salts containing these ions, which is why they are considered soluble. The equilibrium lies to the right.

$$
\mathrm{NaCl}(s) \rightleftharpoons \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$ equilibrium.

Example \#1

Which compound is the least soluble in water at 298 K ?

$$
\begin{aligned}
& \mathrm{CaCO}_{3(s)} \rightleftharpoons \mathrm{Ca}^{2+}{ }_{(a q)}+\mathrm{CO}_{3}^{2-}{ }^{2-}(a q) \\
& \boldsymbol{K}_{\mathrm{sp}}=\left[\mathbf{C a}^{2+}\right]\left[\mathbf{C O}_{3}{ }^{2-}=\mathbf{8 . 7} \mathbf{~ = ~} \mathbf{1 0}^{-9} \text { at } \mathbf{2 5}{ }^{\circ} \mathbf{C}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PbCl}_{2(s)} \rightleftharpoons \mathrm{Pb}^{2+}{ }_{(a q)}+2 \mathrm{Cl}_{(a q)}^{-} \\
& \boldsymbol{K}_{\text {sp }}=\left[\mathbf{P b}^{\left.\mathbf{b}^{+}\right]\left[\mathbf{C l}^{-}\right]^{2}=\mathbf{1 . 6} \mathbf{x} \mathbf{1 0}^{-5} \text { at } \mathbf{2 5}^{\circ} \mathbf{C}}\right.
\end{aligned}
$$

Solubility

$\mathrm{PbCl}_{2(s)} \rightleftharpoons \mathrm{Pb}^{2+}{ }_{(a q)}+2 \mathrm{Cl}_{(a q)}^{-}$

- The solubility is the maximum molar concentration of formula units that will dissolve at a given temperature.
- For every 1 mole of $\mathrm{PbCl}_{2}(\mathrm{~s})$ that dissolves, 1 mole of Pb^{2+} ions and 2 moles of Cl - ions enter the solution.
- Solubility of $\mathrm{PbCl}_{2}=\left[\mathrm{Pb}^{2+}\right]=1 / 2[\mathrm{Cl}-]$
- When the solution is saturated.

Example: $\mathrm{K}_{\text {sp }}$ Calculation

- The solubility product constant for lead (II) fluoride is 3.6×10^{-8} at $25^{\circ} \mathrm{C}$.
(a) Write the balanced chemical equation.
(b) Write the equilibrium expression
(c) Find the maximum molar concentration of the ions in solution and the molar solubility (s) of the solution.

Practice: The solubility of CaSO_{4} is found to be $0.67 \mathrm{~g} / \mathrm{L}$. Calculate the value of $\mathrm{K}_{\text {sp }}$ for calcium sulfate.

$\mathrm{CaSO}_{4}(\mathrm{~s}) \leftrightarrow \mathrm{Ca}^{+2}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$

Initial		0	0
Change	$-s$	$+s$	$+s$
Equilibrium		s	s

Step 1: Calculate the number of moles of CaSO_{4} dissolved in 1 L of solution.
Step 2: Substitute into the $\mathrm{K}_{\text {sp }}$ expression.

$K_{s p} \& O_{s p}$

If $\mathrm{Q}_{\mathrm{sp}}=\mathrm{K}_{\mathrm{sp}}$

- The system is at equilibrium
- It is a saturated solution with solid and aqueous species.

If $Q_{\text {sp }}>K_{\text {sp, }}$, a precipitate will form

- The reaction will proceed to the left until the system reaches equilibrium
If $\mathrm{Q}_{\text {sp }}<\mathrm{K}_{\text {sp, }}$, no precipitate forms.
- The solution is unsaturated.
- All of the ions will remain in solution.

Example: Predicting Possible Precipitates

(a) Find $\mathrm{K}_{\text {sp }}$ for a saturated solution of PbCl_{2} if the concentration of Cl - is found to be 0.0325 M .
(b) Will a precipitate of PbCl_{2} form when 200.0 mL of $3.78 \times 10^{-2} \mathrm{M} \mathrm{NaCl}$ is mixed with 100.0 mL of $2.45 \times 10^{-2} \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$. Assume that the temperature of the resulting solution is the same as that from part a.

Solubility \& the Common Ion Effect

$$
\begin{aligned}
\mathrm{PbCl}_{2(s)} & \rightleftharpoons \mathrm{Pb}_{(a q)}^{2+}+2 \mathrm{Cl}_{(a q)}^{-} \\
\mathrm{NaCl}_{(s)} & \rightarrow \mathrm{Na}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-}
\end{aligned}
$$

- Cl - is the common ion that causes the equilibrium in the first reaction to shift
- The presence of a common ion decreases the solubility of the salt.
- At a given temperature, $\mathrm{K}_{\text {sp }}$ depends on the product of the ion concentration. If the concentration of either ion goes up, the other will go down to maintain $K_{\text {sp }}$.

Example: Common Ion Effect

(a) Find $\left[\mathrm{Ba}^{2+}\right]$ and $\left[\mathrm{SO}_{4}^{2-}\right]$ after 0.0200 g of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is added to a 400.0 mL saturated solution of BaSO_{4} and equilibrium is established. Assume that the volume remains the same and the final temperature is $25^{\circ} \mathrm{C}$. $\left(\mathrm{K}_{\text {sp }}=1.1 \times 10^{-10}\right.$ for BaSO_{4} at $\left.25^{\circ} \mathrm{C}\right)$

Example: Predicting Precipitates \& the Common Ion Effect

If 0.15 M NaOH is slowly poured into a beaker containing 0.14 M $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and $0.25 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$, which precipitate will form first?

$$
\begin{aligned}
& K_{\text {sp }} \text { for } \mathrm{Ca}(\mathrm{OH})_{2}=8.0 \times 10^{-6} \\
& K_{\text {sp }} \text { for } \mathrm{Fe}(\mathrm{OH})_{2}=1.6 \times 10^{-14}
\end{aligned}
$$

Step 1: Find $\left[\mathrm{OH}^{-}\right]_{\max }$ for $\mathrm{Ca}(\mathrm{OH})_{2}$
Step 2: Find $[\mathrm{OH}-]_{\max }$ for $\mathrm{Fe}(\mathrm{OH})_{2}$

7.13 pH \& Solubility

- pH \& Soluble Salts
- Solubility in Weak \& Strong Acid Solutions

Autoionization of Water

$2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}$
In pure water at $25^{\circ} \mathrm{C}$,
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7}$ and $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}$.
$\mathrm{As}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$the solution is neutral.

$$
\begin{aligned}
& K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& K_{\mathrm{w}}=\left(1.0 \times 10^{-7}\right)\left(1.0 \times 10^{-7}\right) \\
& K_{\mathrm{w}}=1.0 \times 10^{-14} \quad\left(\text { at } 25^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Autoionization of Water

$$
\begin{gathered}
2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-} \\
K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left(\text { at } 25^{\circ} \mathrm{C}\right)
\end{gathered}
$$

- This is a constant.
- If you know the concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$you can calculate the concentration of $[\mathrm{OH}$-] or vise versa.
- Memorize this constant! It's very useful.

The pH Scale

Some Cations Acidify Solutions

- Ionic compounds containing $\mathrm{NH}_{4}+$ can acidify solutions.
- $\mathrm{NH}_{4}{ }^{+}$is the conjugate acid of NH_{3}
- Therefore, if $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is added to water:

$$
\mathrm{NH}_{4}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{NH}_{3(a q)}+\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}
$$

The pH drops below 7 because $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases.

Some Cations Acidify Solutions

- The ability to release protons from water increases as:
- Ionic radius decreases
- Charge increases (Fe^{3+} decreases the pH more than Fe^{2+})
- Fe^{3+} is smaller with more net positive charge
- Conjugate acids of strong bases will not affect pH
- Group 1A cations, $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, and Ba^{2+}
- Large radii and/or small net (+) charge

Some Anions Make Solutions Basic

- Anions that are conjugate bases of weak acids accept protons from water to produce OH^{-}.
- The conjugate bases of strong acids will not raise the pH of a solution.
- (Cl-, $\mathrm{ClO}_{4}^{--}, \mathrm{I}^{-}, \mathrm{NO}_{3}-, \mathrm{Br}^{-}, \mathrm{HSO}_{4}-$ do not accept protons from water)
- Example: $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$ is added to water

$$
\mathrm{CH}_{3} \mathrm{COO}_{(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{OH}_{(a q)}^{-}
$$

Metal Oxides are Basic

- Metal oxides can form solid hydroxides.

$$
\begin{aligned}
\mathrm{MgO}_{(s)} & \rightarrow \mathrm{Mg}^{2+}{ }_{(a q)}+\mathrm{O}^{2-}{ }_{(a q)} \\
\mathrm{O}^{2-}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} & \rightarrow 2 \mathrm{OH}^{-}(a q) \\
\hline \mathrm{MgO}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} & \rightarrow \mathrm{Mg}^{2+}{ }_{(a q)}+2 \mathrm{OH}_{(a q)}^{-} \\
\mathrm{MgO}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} & \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(s)}
\end{aligned}
$$

- The slight solubility of solid hydroxides increases [OH-] in the solution.

Example: Metal Oxides are Basic

- Write the net ionic equation for the reaction that takes place when solid potassium oxide is dropped into water.

$$
\frac{\mathrm{K}_{2} \mathrm{O}_{(s)} \rightarrow \mathrm{O}^{2-}(a q)+2 \mathrm{~K}_{(a q)}^{+}}{\mathrm{O}_{(a q)}^{2-}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{OH}_{(a q)}^{-}}
$$

$$
\mathrm{K}_{2} \mathrm{O}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{~K}_{(a q)}^{+}+2 \mathrm{OH}_{(a q)}^{-}
$$

Salts with Weak Acids \& Weak Bases

- Some salts have an acidic cation and a basic anion.
- Solutions containing these salts tend to have little or no overall affect on pH .

will donate H^{+}

Example: Slightly Soluble Ionic Compounds in Strong Acidic Solutions

- Solid magnesium oxide is added to a solution of nitric acid. Write the net ionic equation for the overall reaction.

$$
\mathrm{MgO}_{(s)} \rightleftharpoons \mathrm{Mg}_{(a q)}^{2+}+\mathrm{O}^{2-} \text { (aq) }
$$

$$
2 \mathrm{H}^{+}{ }_{(a q)}+\theta^{2-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}_{(i)}
$$

Net Ionic Equation

$$
\mathrm{MgO}_{(s)}+2 \mathrm{H}_{(a q)}^{+} \rightleftharpoons \mathrm{Mg}_{(a q)}^{2+}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

7.14 Spontaneity and Solubility

- Energy of Dissolution
- Temperature Implications

Spontaneous Processes

- When a reaction happens under a given set of circumstances, without any outside forces, it is said to be spontaneous.
- Doesn't have to be a FAST reaction, but it will just happen without any 'help'.
- Iron exposed to water and oxygen forms rust $\left(\mathrm{FeO}_{2}\right.$ and $\left.\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, but rust does not spontaneously chanae back to iron.

Free Energy of Dissolution

- Microstates - all of the tiny, individual places within a container that the particles can occupy.
- Dissolving a solid into a solution increases the amount of entropy (+ $\Delta \mathrm{S}$).

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

Step	ΔH	ΔS
1 - Solvent separates (overcomes IMFs)	+	+
2 - Solute separates (overcomes IMFs)	+	+
3 - The solution forms (forming IMFs)	-	-

