

Unit 7 Equilibrium

7.1 Introduction to Equilibrium 7.2 Direction of Reversible Reactions 7.3 Reaction Quotient & Equilibrium Constant

- Establishing Equilibrium
- Equilibrium Constants (K_c and K_p)
- Reaction Quotients (Q_c and Q_p)

Dynamic Equilibrium

Most reactions do not go to completion.

- Here, all of the reactants <u>do not</u> get used up.
- The system reaches a dynamic state where reactants are continually turning into products, and products are continually turning back into reactants.

 $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$

Time

In this example, the system initially contains only reactants, N₂O₄, and eventually establishes equilibrium.

Time

In this example, the system initially contains only reactants, N₂O₄, and eventually establishes equilibrium.

Establishing Chemical Equilibrium

- When the rate of the forward reaction is greater than the rate of the reverse reaction, there is a net conversion of reactants into products.
- The reversible reaction is proceeding to the right.
- When the rate of the reverse reaction is greater than the the rate of the forward reaction, there is a net conversion of products into reactants.
- The reversible reaction is proceeding to the left.

Once Equilibrium is Established

- No observable changes occur even though...
 - Forward and reverse reactions continue to take place.
 - The rate of the forward reaction EQUALS the rate of the reverse reaction.
- Concentrations and/or partial pressures of all species remain constant, yet they will rarely be equal to one another.

Closed System

Volume Remains Constant

Maintaining Equilibrium

Temperature Remains Constant

The Equilibrium Constant (K_{eq}) Species involved in the reaction $aA + bB \rightleftharpoons dD + eE$ square brackets represent concentration in [mol/L] $[A] [D] \checkmark$ Units for Concentration mol/L = M

Example: Equilibrium Expression (K_c)

- Write the equilibrium expression, K_c, for:
 - $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
 - $K_{\rm c} = \frac{[NO]^2}{[N_2][O_2]}$

Example: Equilibrium Expression (K_c)

- Write the equilibrium expression, K_c, for:
 - $NiO(s) + CO(g) \rightleftharpoons Ni(s) + CO_2(g)$
 - [NiO] has not changed.
 - Concentration is measured in mol/L.
 - Both pieces have the same density, so both contain the same number of particles per unit volume.

Example: Equilibrium Expression (K_c)

Write the equilibrium expression, K_c, for:

$\frac{[Cl_{2}]^{2}}{[HCl]^{4}[O_{2}]}$

$4HCl(aq) + O_2(g) \rightleftharpoons 2Cl_2(g) + 2H_2O(l)$

 Adding or taking away small amounts of water in a reaction that takes place in an aqueous solution does not affect the overall concentration of H₂O

Details About the Equilibrium Constant, K

- Small K means little to no reaction
- Large K means the reaction goes to or near completion
- equilibrium.

 $K \gg 1$

Products

• K indicates how far a reaction will proceed towards the products at a given temperature.

Intermediate K means significant amounts of reactants and products are present at

The Reaction Quotient (Q)

- The reaction quotient, Q_c, describes relative concentrations of products and reactants at any point in time.
- The expression for Q_c is the same as that for K_c.
- When the system is at equilibrium, $Q_c = K_c$
- When $Q_c < K_c$: The reaction will tend toward the products
- When $Q_c > K_c$: The reaction will tend toward the reactants

 $aA + bB \rightleftharpoons dD + eE$ $[D]^d [E]^e$ $[A]^a [B]^b$ \sim

For gases, K_p is often used Species involved in the reaction $aA + bB \rightleftharpoons dD + eE$ stoichiometric coefficients

constant

 $(P_{\rm A})^a (P_{\rm B})^b$

Partial Pressure e > measured in atm

For gases, K_p is often used

- specific gas.
- The partial pressures of all the gases in a system sum up to the total pressure in that system.
- 1 mole of one type of gas will exert the same pressure as 1 mole of a different type of gas, under the same conditions of volume and temperature.
- 2 moles of a gas will exert twice as much pressure.

• The partial pressure of a gas in a system is the pressure exerted by that

Example: Equilibrium Constant (K_p)

Write the equilibrium expression, K_p, for:

- $2NO_2(g) + Cl_2(g) \rightleftharpoons 2NOCl(g)$

 $K_{p} = \frac{(P_{\text{NOC1}})^{2}}{(P_{\text{NO}_{2}})^{2}(P_{\text{C1}_{2}})}$

You must use round brackets in the $K_{\rm p}$ expression.

Example: Equilibrium Constant (K_p)

$CH_4(g) + 2H_2S(g) \rightleftharpoons CS_2(g) + 4H_2(g)$

K_p?

• At 1000 K, the equilibrium partial pressures for the reaction above are CH₄ = 0.20 atm, H₂S = 0.25 atm, CS₂ = 0.52 atm and H₂ = 0.10 atm. What is

Practice

- For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, $K_c = 0.21$ at 100°C. At a point
- during the reaction, $[N_2O_4] = 0.12$ M and $[NO_2] = 0.55$ M. Is the reaction at equilibrium at that time? If not, in which direction is it proceeding?
 - Answer:
 - $Q_{c} = [NO_{2}]^{2}/[N_{2}O_{4}] = (0.55)^{2}/(0.12) = 2.52$
 - $2.52 \neq 0.21$ so it is not at equilibrium, and since 2.52 > 0.21, the <u>rxn</u> must proceed to the LEFT, making more reactants to reach equilibrium.

7.4 Calculating the Equilibrium Constant 7.5 Magnitude of the Equilibrium Constant 7.6 Properties of the Equilibrium Constant

Example: Calculating K_c

A system establishes equilibrium at 500.0°C in accordance with the chemical equation below and the following concentrations were measured. Calculate the value of the equilibrium constant, K_c.

 $[N_2] = 1.50 \times 10^{-5} M$ $[H_2] = 3.45 \times 10^{-1} M$ $[NH_3] = 2.00 \times 10^{-4} M$

 $N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$

Example: Calculating Kp

A system establishes equilibrium at 485°C in accordance with the chemical equation below and the following partial pressures were measured. Calculate the value of the equilibrium constant, K_p.

 $[H_2] = 0.035$ atm $[I_2] = 0.045$ atm [HI] = 0.280 atm

 $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$

What K_{eq} Tells Us $2 \operatorname{HI}_{(g)} \rightleftharpoons \operatorname{H}_{2(g)} + I_{2(g)}$

$K_{\rm P} = \frac{(P_{\rm H_2})(P_{\rm I_2})}{(P_{\rm HI})^2} = 0.0184 \text{ at } 698 \text{ K}$

$(P_{\rm HI})^2 > (P_{\rm H_2}) (P_{\rm I_2})$ **Mostly Reactants**

What K_{eq} Tells Us $2 \operatorname{NO}_{(g)} \rightleftharpoons \operatorname{N}_{2(g)} + O_{2(g)}$

$K_{\rm c} = \frac{[N_2][O_2]}{[NO]^2} = 2.4 \times 10^3$ at 2273 K

$[NO]^2 << [N_2] [O_2]$ **Mostly Products**

What K_{eq} Tells Us

 $K_{ea} >> 1$ (mostly products)

- (equilibrium lies far to the right)

- (equilibrium lies far to the left)
- $K_{eq} \approx 1$ (~ equal amounts of each) (equilibrium lies in the middle)

Manipulating K & Q

There are three ways in which K and Q can be manipulated.

1. Coefficient Rule

- 2. Reciprocal Rule
- 3. Multiple Equilibria Rule

Coefficient Rule

the power of n. (1)

$\frac{1}{2}(i) = (ii)$

When coefficients are changed by a factor of n, K_{eq} is raised to

 $2 A_{(g)} + B_{(aq)} \rightleftharpoons 6 D_{(aq)}$ $K_{\rm c}^{\rm i} = \frac{[D]^6}{[A]^2[B]}$ $K_{c}^{ii} = \frac{[D]^{3}}{[A][B]^{\frac{1}{2}}} = \left[\frac{[D]^{6}}{[A]^{2}[B]}\right]^{\frac{1}{2}} \qquad K_{c}^{ii} = (K_{c}^{i})^{\frac{1}{2}}$

Reciprocal Rule

When a reaction is reversed, the new K_{eq} value is the inverse of the old K_{eq} value. (i)

 $(i)^{-1} = (iii)$

 $6 D_{(aq)} \rightleftharpoons 2 A_{(g)} + B_{(aq)}$ $K^{\text{iii}} - [A]^2[B]$

 $2 A_{(g)} + B_{(aq)} \rightleftharpoons 6 D_{(aq)}$ $K_{\rm c}^{\rm i} = \frac{[D]^6}{[A]^2[B]}$

Multiple Equilibria Rule

product of the K_{eq} values from the individual reactions.

When two or more reactions are combined, the new K_{eq} is the

 $K_{\rm c}^{\rm i}$ x $K_{\rm c}^{\rm iv}$ = $K_{\rm c}^{\rm v}$

$$B_{(aq)} \rightleftharpoons 6 D_{(aq)}$$

$$B_{(aq)} \rightleftharpoons 2 A_{(g)} + F_{(aq)}$$

7.7 Calculating Equilibrium Concentrations

Calculating Equilibrium Partial Pressures & Concentration ICE Charts

Warm-up: Calculating Equilibrium Partial Pressures

Suppose you start out with only H₂O(g) in a rigid container at 25°C, and its initial partial pressure is recorded to be 0.784 atm. What are the partial pressures of each species when the system reaches equilibrium?

 $(K_p = 2.0 \times 10^{-42})$

 $2 \operatorname{H}_2 O_{(g)} \rightleftharpoons 2 \operatorname{H}_{2(g)} + O_{2(g)}$

Warm-up: Calculating Equilibrium Partial Pressures

$(K_p = 2.0 \times 10^{-42})$

Initial	0.784	0	0
Change	-2x	+2x	+χ
Equilibrium	0.784 - 2x	2x	Χ

$2 \operatorname{H}_2 O_{(g)} \rightleftharpoons 2 \operatorname{H}_{2(g)} + O_{2(g)}$

Warm-up: Calculating Equilibrium Partial Pressures

$(K_p = 2.0 \times 10^{-42})$

Initial 0.784 0 0 -2x Change +2x+XEquilibrium 0.784 - 2x 2xХ

When $K_{eq} < 1 \times 10^{-4}$ you can usually ignore this (x) to avoid the difficult math.

		_

Example: Calculating Equilibrium Concentrations

Find the equilibrium concentrations of all species if 0.194 mol of COCl₂ is allowed to come to equilibrium in a 5.8 L container at 25°C. ($K_c = 7.28 \times 10^{-38}$)

Initial	3.3 x 10 ⁻²	
Change	-X	
Equilibrium	3.3 x 10 ⁻² - x	

$$CO_{(g)} + Cl_{2(g)}$$

$\operatorname{COCl}_{2(g)} + \operatorname{H}_2 O_{(l)} \rightarrow \operatorname{CO}_{2(g)} + 2 \operatorname{HCl}_{(aq)}$

7.8 Representations of Equilibrium 7.9 Introduction to Le Chatelier's Principle 7.10 Reaction Quotient & Le Chatelier's Principle

Le Chatelier's Principle

When a system at equilibrium is subjected to a stress, the equilibrium will shift in order to reduce that stress.

The only three stresses are changes in:

- 1. Pressure
- 2. Concentration
- 3. Temperature

Stress from Increasing Pressure

If the **pressure** on a system at equilibrium is **increased**, Q moles of gas to reduce the stress.

This changes the equilibrium concentrations, but it does not change the Equilibrium Constant (K_{eq}).

changes and the reaction will proceed toward the side with fewer

14 gaseous molecules

2 NH₃, 5 N₂, 7 H₂

Stress from Decreasing Pressure

If the **pressure** on a system at equilibrium is **decreased**, Q moles of gas to reduce the stress.

This changes the equilibrium concentrations, but it does not change the Equilibrium Constant (K_{eq}).

changes and the reaction will proceed toward the side with more

10 gaseous molecules

Stress from Decreasing Pressure $N_{2(g)} + 3 H_{2(g)} \rightleftharpoons 2 NH_{3(g)}$

Reaction proceeds this way

14 gaseous molecules

Stress from Increasing Concentration

If the **concentration** on a system at equilibrium is **increased**, Q changes and the reaction will proceed in the direction that will **reduce the concentration** of that species.

This increases the equilibrium concentrations, but it does not change the Equilibrium Constant (K_{eq}).

Stress from Decreasing Concentration

increase the concentration of that species.

This increases the equilibrium concentrations, but it does not change the Equilibrium Constant (K_{eq}).

If the concentration on a system at equilibrium is decreased, Q changes and the reaction will proceed in the direction that will

Stress from Dilution

If **solvent is added** to a system at equilibrium, Q changes and the reaction will proceed toward the side with **more particles** to reduce that stress.

This increases the equilibrium concentrations, but it <u>does not</u> change the Equilibrium Constant (K_{eq}).

13 aqueous HF

8 aqueous HF

Stress from Changing Temperature

$$N_{2(g)} + 3 H_{2(g)}$$

in the direction that produces heat.

This is the **only stress** that **changes the equilibrium constant** (K_{eq})

- $\implies 2 \operatorname{NH}_{3(g)} + \text{heat}$
- Cooling (taking heat away) shifts the equilibrium

$N_{2(g)} + 3 H_{2(g)} \implies 2 NH_{3(g)} + heat$

Adding heat (increasing the temperature) shifts the equilibrium in the direction that absorbs heat.

Example: Stress from Temperature Changes

if the temperature of the system increases to 75°C.

$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ Colorless Brown

When heat is added, the reaction will proceed to the right.

[NO₂] would increase.

- A system represented by the chemical equation below is in a state of equilibrium at 25°C. Describe the color change that would occur
 - $\Delta H = +57.2 \text{kJ}$

- The system would become a darker shade of brown, because

Example: Stress from Temperature Changes

A system represented by the chemical equation below is in a state of equilibrium at 5°C. If the temperature of the system increases to 99.0°C, will the pH increase, decrease or remain the same?

When heat is added, the reaction will proceed to the right.

• The pH would decrease, because [H₃O+] would increase.

$$COO_{(aq)} + H_3O_{(aq)}^+ \Delta H = +1.2kJ$$

Example: Stress from Temperature Changes

A system represented by the chemical equation below is in a state of attempts to re-establish equilibrium? Justify your answer.

$$N_{2(g)} + 3 H_{2(g)} = 1$$

• The temperature will decrease.

- The rate of the reverse reaction would be greater than the rate of the forward reaction.
- The reverse reaction is endothermic.

- equilibrium in a cylinder at 25.00°C. If the volume of the cylinder was increased,
- would the temperature increase, decrease or remain the same while the system
 - $\Delta H = -92 \text{ kJ}$

7.11 Introduction to Solubility Equilibria 7.12 Common-Ion Effect

• The Solubility Product Constant (K_{sp})

Predicting Precipitates

- Saturated Solution
- A solution is at equilibrium when it is saturated.

Saturation & Equilibrium

 The solvent has dissolved the maximum amount of solute that can at a certain temperature, and some solid solute remains on the bottom.

The Solubility Product Constant (K_{sp})

• This is K_{sp} for ionic compounds in water.

 $CaCO_{3(s)} \rightleftharpoons Ca^{2+}_{(aq)} + CO_{3}^{2-}_{(aq)}$ $K_{sn} = [Ca^{2+}] [CO_3^{2-}]$

K_{sp} values generally range from about 1 x 10⁻³ to 1 x 10⁻⁵⁴ or compounds that are considered to be insoluble. ONLY DEPENDENT ON TEMPERATURE

 $PbCl_{2(s)} \rightleftharpoons Pb^{2+}_{(aq)} + 2Cl_{(aq)}$ $K_{sn} = [Pb^{2+}] [Cl^{-}]^{2}$

Solubility Rules

K_{sp} > 1 for all salts containing these ions, which is why they are considered soluble. The equilibrium lies to the right.

K_{sp} determines the amount of dissociation that occurs as a reaction proceeds at equilibrium.

All salts containing Na+, K+, NH₄+ or NO₃– are soluble in water.

 $\operatorname{NaCl}(s) \Longrightarrow \operatorname{Na}^+(aq) + \operatorname{Cl}^-(aq)$

Example #1

Which compound is the least soluble in water at 298K?

$$CaCO_{3(s)} \rightleftharpoons Ca^{2+}_{(aq)} + CO_{3}^{2-}_{(aq)}$$

 $K_{sp} = [Ca^{2+}] [CO_{3}^{2-}] = 8.7 \times 10^{-9} \text{ at } 25 \text{ °C}$

$$PbCl_{2(s)} \rightleftharpoons P$$

$$K_{sp} = [Pb^{2+}] [Cl^{2}]$$

$^{2}b^{2+}_{(aq)} + 2Cl^{-}_{(aq)}$ $^{2} = 1.6 \times 10^{-5} \text{ at } 25 \,^{\circ}\text{C}$

Solubility

- dissolve at a given temperature.
 - moles of CI- ions enter the solution.
 - Solubility of $PbCl_2 = [Pb^{2+}] = 1/2[Cl^{-}]$
 - When the **solution is saturated**.

$PbCl_{2(s)} \rightleftharpoons Pb^{2+}_{(aq)} + 2 Cl_{(aq)}$

• The solubility is the maximum molar concentration of formula units that will

• For every 1 mole of PbCl₂(s) that dissolves, 1 mole of Pb²⁺ ions and 2

Example: K_{sp} Calculation

(a) Write the balanced chemical equation.

(b) Write the equilibrium expression

the molar solubility (s) of the solution.

- The solubility product constant for lead (II) fluoride is 3.6 x 10⁻⁸ at 25°C.

 - (c) Find the maximum molar concentration of the ions in solution and

Practice: The solubility of CaSO₄ is found to be 0.67 g/L. Calculate the value of K_{sp} for calcium sulfate.

$CaSO_4(s) \leftrightarrow Ca^{+2}(aq) + SO_4^{2-}(aq)$

Initial		0	0
Change	-S	+s	+s
Equilibrium		S	S

Step 1: Calculate the number of moles of CaSO₄ dissolved in 1 L of solution.

Step 2: Substitute into the K_{sp} expression.

- If $Q_{sp} = K_{sp}$
 - The system is at equilibrium
- It is a saturated solution with solid and aqueous species. If Q_{sp}> K_{sp}, a precipitate will form
 - The reaction will proceed to the left until the system reaches equilibrium
- If Q_{sp} < K_{sp}, no precipitate forms.
 - The solution is unsaturated.
 - All of the ions will remain in solution.

K_{sp} & O_{sp}

Example: Predicting Possible Precipitates

(a) Find K_{sp} for a saturated solution of PbCl₂ if the concentration of Cl- is found to be 0.0325 M.

(b) Will a precipitate of PbCl₂ form when 200.0 mL of 3.78 x 10⁻² M NaCl is mixed with 100.0 mL of 2.45 x 10⁻² M Pb(NO₃)₂. Assume that the temperature of the resulting solution is the same as that from part a.

Solubility & the Common Ion Effect $PbCl_{2(s)} \rightleftharpoons$ $\operatorname{NaCl}_{(s)} \rightarrow \operatorname{Na^{+}}_{(aq)} + \operatorname{Cl}_{(aq)}$

- CI- is the common ion that causes the equilibrium in the first reaction to shift
- The presence of a common ion **decreases** the solubility of the salt.
- At a given temperature, K_{sp} depends on the product of the ion concentration. If the concentration of either ion goes up, the other will go down to maintain K_{sp} .

$$Pb^{2+}_{(aq)} + 2 Cl_{(aq)}$$

Example: Common Ion Effect

(a) Find $[Ba^{2+}]$ and $[SO_4^{2-}]$ after 0.0200 g of $Ba(NO_3)_2$ is added to a 400.0 mL saturated solution of BaSO₄ and equilibrium is established. Assume that the volume remains the same and the final temperature is 25°C. ($K_{sp} = 1.1 \times 10^{-10}$ for BaSO₄ at 25°C)

Example: Predicting Precipitates & the Common Ion Effect

If 0.15 M NaOH is slowly poured into a beaker containing 0.14 M Ca(NO₃)₂ and 0.25 M Fe(NO₃)₂, which precipitate will form first? $K_{\rm sp}$ for Ca(OH)₂ = 8.0 x 10⁻⁶ K_{sp} for Fe(OH)₂ = 1.6 x 10⁻¹⁴

Step 1: Find [OH-]_{max} for Ca(OH)₂ Step 2: Find [OH-]_{max} for Fe(OH)₂

• pH & Soluble Salts

Solubility in Weak & Strong Acid Solutions

7.13 pH & Solubility

Autoionization of Water $2 H_2 O_{(l)} \rightleftharpoons H_3 O^+_{(aq)} + OH^-_{(aq)}$

- $[H_3O^+] = 1.0 \text{ x } 10^{-7} \text{ and } [OH^-] = 1.0 \text{ x } 10^{-7}.$
- As $[H_3O^+] = [OH^-]$ the solution is neutral.

 - $K_{\rm w} = [{\rm H}_3{\rm O}^+] [{\rm OH}^-]$ $K_{\rm w} = (1.0 \text{ x } 10^{-7}) (1.0 \text{ x } 10^{-7})$
 - $K_{\rm m} = 1.0 \ {\rm x} \ 10^{-14}$ (at 25 °C)

In pure water at 25°C,

Autoionization of Water $2 H_2 O_{(l)} \rightleftharpoons H_3 O^+_{(aq)} + OH^-_{(aq)}$ $K_{\rm w} = [H_3O^+] [OH^-] = 1.0 \times 10^{-14}$ (at 25 °C)

- This is a constant.
- of [OH-] or vise versa.
- Memorize this constant! It's very useful.

• If you know the concentration of [H₃O⁺] you can calculate the concentration

The pH Scale

OH-] Increases

The pH of a solution increases as $[H_3O^+]$ decreases and $[OH^-]$ increases.

The pH of a solution decreases as $[H_3O^+]$ increases and $[OH^-]$ decreases.

Some Cations Acidify Solutions

- Ionic compounds containing NH₄+ can acidify solutions.
 - NH₄⁺ is the conjugate acid of NH₃
 - Therefore, if NH₄NO₃ is added to water:
 - $\mathrm{NH}_{4^+(aq)} + \mathrm{H}_2\mathrm{O}_{(l)} \rightleftharpoons \mathrm{NH}_{3(aq)} + \mathrm{H}_3\mathrm{O}_{(aq)}^+$

The pH drops below 7 because [H₃O⁺] increases.

Some Cations Acidify Solutions

- The ability to release protons from water increases as:
 - Ionic radius decreases
 - Charge increases (Fe³⁺ decreases the pH more than Fe²⁺)
 - Fe³⁺ is smaller with more net positive charge
- Conjugate acids of strong bases <u>will not</u> affect pH
 - Group 1A cations, Ca²⁺, Sr²⁺, and Ba²⁺
 - Large radii and/or small net (+) charge

Some Anions Make Solutions Basic

- Anions that are conjugate bases of weak acids accept protons from water to produce OH-.
 - The conjugate bases of strong acids will not raise the pH of a solution.
 - (CI-, CIO_4 -, I-, NO_3 -, Br-, HSO_4- do not accept protons from water)

• Example: NaCH₃CO₂ is added to water

- $CH_3COO_{(aq)} + H_2O_{(l)} \rightleftharpoons CH_3COOH_{(aq)} + OH_{(aq)}$

Metal Oxides are Basic

Metal oxides can form solid hydroxides.

 $O^{2-}_{(aq)} + H_2O_{(l)} \rightarrow 2 OH^{-}_{(aq)}$

 $MgO_{(s)} + H_2O_{(l)} \rightarrow Mg(OH)_{2(s)}$

- $MgO_{(s)} \rightarrow Mg^{2+}_{(aq)} + O^{2-}_{(aq)}$
- $MgO_{(s)} + H_2O_{(l)} \rightarrow Mg^{2+}_{(aq)} + 2 OH^{-}_{(aq)}$
- The slight solubility of solid hydroxides increases [OH-] in the solution.

Example: Metal Oxides are Basic

 Write the net ionic equation for the reaction that takes place when solid potassium oxide is dropped into water.

 $K_2O_{(s)} + H_2O_{(l)} \rightarrow 2 K^+_{(aq)} + 2 OH^-_{(aq)}$

Salts with Weak Acids & Weak Bases

- Some salts have an acidic cation and a basic anion.
 - Solutions containing these salts tend to have little or no overall affect on pH.

will donate H⁺

Example: Slightly Soluble Ionic Compounds in Strong Acidic Solutions

net ionic equation for the overall reaction.

$$MgO_{(s)} \rightleftharpoons 2 H^{+}_{(aq)} + O^{2-}_{(aq)} \rightarrow$$

Net Ionic Equation

 $MgO_{(s)} + 2 H^+_{(aq)} \rightleftharpoons Mg^{2+}_{(aq)} + H_2O_{(l)}$

Solid magnesium oxide is added to a solution of nitric acid. Write the

 $Mg^{2+}_{(aq)} \neq \Theta^{2-}_{(aq)}$ $H_2O_{(1)}$

Energy of Dissolution

Temperature Implications

7.14 Spontaneity and Solubility

Spontaneous Processes

- forces, it is said to be spontaneous.
- Doesn't have to be a FAST reaction, but it will just happen without any 'help'.
 - Iron exposed to water and oxygen forms rust (FeO₂ and Fe₂O₃), but rust does not spontaneously change back to iron.

• When a reaction happens under a given set of circumstances, without any outside

Free Energy of Dissolution

- <u>Microstates</u> all of the tiny, individual places within a container that the particles can occupy.
- Dissolving a solid into a solution increases the amount of entropy (+ Δ S).

$\Delta G = \Delta H - T\Delta S$

Solute	Step	ΔH
	1 - Solvent separates (overcomes IMFs)	+
	2 - Solute separates (overcomes IMFs)	+
	3 - The solution forms (forming IMFs)	

