

Unit 8 Acids & Bases

- Autoionization of Water
- pH of Strong Acids
- pOH & pH of Strong Bases

8.1 Introduction to Acids & Bases 8.2 pH & pOH of Strong Acids & Bases

Terminology

Arrhenius (what you learned last year)

- Acid: substances that dissolve in water to form H⁺
- Base: substances that dissolve in water to form OH-

- **Brønsted-Lowry** (transfer of H⁺ during an acid-base reaction)
- Acid: donates H⁺
- Base: accepts H⁺

- Acid Base
- $HCI + NH_3 \Leftrightarrow NH_4^+ + CI^-$

 $HCI + NH_3 \Leftrightarrow NH_4^+ + CI^-$

Example: Conjugate Pairs

Label the conjugate acid-base pairs in the reaction.

In a conjugate pair, the acid will always have one more proton than its conjugate base - making it easier to predict formulas

 $CH_3COOH_{(aq)}$ $H_2O_{(l)} \rightleftharpoons CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$

Autoionization of Water $2 H_2 O_{(l)} \rightleftharpoons H_3 O^+_{(aq)} + OH^-_{(aq)}$

- $[H_3O^+] = 1.0 \text{ x } 10^{-7} \text{ and } [OH^-] = 1.0 \text{ x } 10^{-7}.$
- As $[H_3O^+] = [OH^-]$ the solution is neutral.

 - $K_{\rm w} = [{\rm H}_3{\rm O}^+] [{\rm OH}^-]$ $K_{\rm w} = (1.0 \text{ x } 10^{-7}) (1.0 \text{ x } 10^{-7})$
 - $K_{\rm m} = 1.0 \ {\rm x} \ 10^{-14}$ (at 25 °C)

In pure water at 25°C,

Autoionization of Water $2 H_2 O_{(l)} \rightleftharpoons H_3 O^+_{(aq)} + OH^-_{(aq)}$ $K_{\rm w} = [H_3O^+] [OH^-] = 1.0 \times 10^{-14}$ (at 25 °C)

- This is a constant.
- of [OH-] or vise versa.
- Memorize this constant! It's very useful.

• If you know the concentration of [H₃O⁺] you can calculate the concentration

Example: Autoionization of Water

The concentration of OH- in a solution
 Find [H₃O+]

• The concentration of OH- in a solution is found to be 1.4×10^{-11} M at 25° C.

H⁺ and H₃O⁺

• Equations for acids can be written as:

Hydrogen ion, H⁺, and hydronium ion, H₃O⁺, are used interchangeably for the aqueous ion of hydrogen.

$HA(aq) + H_2O(l) \rightarrow H_3O^+(aq) + A^-(aq)$

$HA(aq) \rightarrow H^+(aq) + A^-(aq)$

$pH = -log[H^+]$ and $pOH = -log[OH^-]$

- Expresses the negative power of 10 for the concentration of H⁺
- A solution with $[H_3O^+] = 10^{-4}$ has a pH of 4

 $[H^+] = 10^{-pH} M$ $[OH^{-}] = 10^{-pOH} M$

Find the pH of pure water at 25°C, remembering that $K_w = 1.0 \times 10^{-14}$ at 25°C.

If a solution has a pH of 5.63, find the [H+].

The 'Big Six' Strong Acids

• These are the only acids that completely ionize (dissociate) in aqueous solution to produce hydronium ions, H₃O⁺.

HBr HNO₃

 H_2SO_4

Example: Calculating pH for a Strong Acid Solution

• Find the pH of a 2.5 M HCl solution.

• Find the pH of a 0.05 M H₂SO₄ solution.

For strong acids, we assume 100% ionization.

Example: Calculating pH for a Strong Acid Solution

Find the pH of a solution that was created by mixing 500.0 mL of 0.15 M HBr with 250.0 mL of 0.20 M HNO₃. Assume the volumes are additive.

Step 1: Find the concentration of H₃O⁺.

Step 2: Find the final pH.

Strong Bases

Soluble compounds containing the hydroxide ion.

Possible Cations:

All Group 1A Cations

• Ca²⁺, Sr²⁺, or Ba²⁺

Example: Calculating the pOH for Strong Base Solutions

Find the pOH of a 1.5 M KOH solution. • This is a strong base, so we assume complete dissociation.

Example: Calculating pH for Strong Base Solutions

Find the pH of a 3.5 M NaOH solution at 25°C.
This is a strong base, so we assume complete dissociation again.

K_w at Temperatures Other than 25°C $2 H_2O + heat \rightleftharpoons H_3O^+ + OH^ K_{w} = [H_{3}O^{+}][OH^{-}]$

- The auto-dissociation of water is an endothermic process.
- When temperature increases, the equilibrium shifts to the right, so $[H_3O^+]$, [OH-] and K_w increase.
- When the temperature decreases, the equilibrium shifts to the left so [H₃O⁺], [OH-] and K_w decrease.

8.3 Weak Acid & Base Equilibria

- K_a and K_b
- pH of Weak Acids & Bases
- Polyprotic Acids

$[H_3O^+][NH_3]$ $K_{\rm a} =$ $[NH_4^+]$

The stronger the acid, the larger the K_a

Base Ionizatio NH_{3(aq)} + H₂O_(l) \equiv

$K_{\rm b} = \frac{[\rm NH_4^+][\rm OH^-]}{[\rm NH_3]}$

The stronger the base, the large

on Constant (K _b)			
$\Rightarrow OH_{(aq)} + NH_4^+(aq)$			
7	Base	K b	
	NaOH	Very Large Num	
	NH ₃	1.8 x 10 ⁻⁵	
	C10-	3.3 x 10 ⁻⁷	
	H ₂ NOH	1.1 x 10 ⁻⁸	
	C_5H_5N	1.7 x 10 ⁻⁹	
<u>er</u> the K _b			

pK_a and pK_b Values are Often Given

$pK_{\rm h} = -\log_{10}(K_{\rm h})$

$K_{\rm h} = 10^{-pK_{\rm b}}$

pK_a for HCN is 9.31 at 25°C. Find K_a at 25°C.

The stronger the acid, the smaller the pKa

Acid HC1 HNO_3 HSO₄- $C_9H_8O_4$ CH₃COOH HCN

K a	p <i>K</i> _a
2 x 10 ⁶	-6.3
30	-1.5
0.011	1.96
6.6 x 10 ⁻⁴	3.18
1.8 x 10 ⁻⁵	4.74
4.9 x 10 ⁻¹⁰	9.31

Base K_b NaOH 1.8 x 10⁻⁵ NH_3 3.3 x 10⁻⁷ C10⁻ H_2NOH 1.1 x 10⁻⁸ 1.7 x 10⁻⁹ C_5H_5N

р*K*_b Very Large Number | Negative Number 4.74 6.48 7.96 8.77

The stronger the base, the <u>smaller</u> the pK_b

Relationship Between K_a and K_b $K_w = K_a \times K_b$ **Basic Reaction** $NH_{3(aa)} + H_2O_{(l)} \Longrightarrow NH_{4^+(aa)} + OH_{(aa)}$ $K_{\rm b} = 1.8 \times 10^{-5} = \frac{[\rm NH_4^+][\rm OH^-]}{\rm cmm^-}$ $[NH_3]$ **Acidic Reaction** $NH_{4(aq)}^{+} + H_2O_{(l)} \rightleftharpoons NH_{3(aq)}^{+} + H_3O_{(aq)}^{+}$

- $K_{\rm a} = 5.6 \times 10^{-10} = \frac{[\rm NH_3] [\rm H_3O^+]}{-10}$ $[NH_{4}^{+}]$

Relationship Between K_a and K_b

 $\left(\frac{[\mathrm{NH}_{4}^{+}][\mathrm{OH}^{-}]}{[\mathrm{NH}_{3}]}\right)\left(\frac{[\mathrm{NH}_{3}][\mathrm{H}_{3}\mathrm{O}^{+}]}{[\mathrm{NH}_{4}^{+}]}\right) = [\mathrm{OH}^{-}][\mathrm{H}_{3}\mathrm{O}^{+}] = K_{\mathrm{w}}$

$pK_w = pK_a + pK_b (@25^{\circ}C)$

Example: pK_a & pK_b

base was found to be 15.5 at 25°C.

1. What is the pK_a value for the acid?

- 2. Is the solution acidic or basic?
- 3. Is the conjugate base a stronger or a weaker base than water? The conjugate base is a weaker base than water. Water and the conjugate base compete for protons and water wins every time (strong acid - HNO₃).

 $pK_w = pK_a + pK_b (@25^{\circ}C)$

An acid was dissolved in water and the pK_b value associated with its conjugate

 $pK_a = -1.5$

Acidic

Example: Calculating pH for a Weak Acid Solution Find the pH of a 2.5 M solution of HF. $HF_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O$ Step 1: Find K_a Step 3: Find pH using [H₃O⁺]

Step 2: Find [H₃O⁺] using an ICE chart

$$F_{(aq)} + F_{(aq)} - (pK_a = 3.14)$$

| F'- |

Find the pH and % ionization of a 1.5 M HCN solution.

Step 1: Find K_a

Step 2: Find [H₃O⁺] using an ICE c

Example: Calculating pH for a Weak Acid Solution

$HCN_{(aq)} + H_2O_{(l)} \cong H_3O^+_{(aq)} + CN^-_{(aq)} (pK_a = 9.31)$

	Step 3:	Find pH using [H ₃ O+]
chart	Step 4:	Find % ionization.

 $|CN^{-}|$

Example: K_a and pH with % lonization

Acetic acid, HC₂H₃O₂, experiences 0.767% ionization in a 0.300 M solution at 25°C. Find K_a for acetic acid at 25°C and the pH of the solution.

Weak Bases

Weak bases react with water to produce hydroxide ions, OH-.

Weak Base

The equilibrium for weak base reactions normally lies to the left.

• Find the pH of a 3.5 M solution of NH₃.

Step 1: Find K_b

Step 2: Find [OH-] using an ICE chart

Polyprotic Acids Polyprotic acids can donate more than one H⁺ in a solution. e.g. H_2SO_4 and H_2CO_3 Image: state of the state of $H_2CO_{3(aq)} \rightleftharpoons H^+_{(aq)} + HCO_3^-_{(aq)} (K_{a1} = 4.3 \times 10^{-7})$ $HCO_{3(aq)} \rightleftharpoons H^{+}_{(aq)} + CO_{3}^{2-}_{(aq)} \quad (K_{a2} = 5.6 \times 10^{-11})$

• Always use K_{a1} to calculate [H⁺] and pH.

- Most of the H⁺ ions come from the first ionization.
- The H⁺ ions from the first ionization drive the equilibrium(s) for the other ionizations to the left.

8.4 Acid-Base Reactions & Buffers

Strong Acid-Strong Base

Weak Acid-Strong Base

Strong Acid-Weak Base

Weak Acid-Weak Base

Acid-Base Reactions

- Reactions between acids and bases are called neutralization reactions.
- If a strong acid or base is involved, $K_{eq} > 1$, the reaction goes to completion and a one way arrow is used.
- In a weak acid-weak base reaction, $K_{eq} < 1$, a state of equilibrium is established and two way arrows are used.

Strong Acid - Strong Base Reactions

- Strong acids and strong bases experience 100% ionization.
- H^+ and OH^- ions combine to form H_2O .
 - These reactions go to completion.
 - $[H^+][OH^-] = K_w = 1 \times 10^{-14} \text{ at } 25^{\circ}\text{C}.$
- The other parts of these acids and bases act as spectator ions.
- The pH can be determined from the excess reactant.

Example: Strong Acid - Strong Base Reactions

net ionic equation for the reaction and find the pH of the final solution. Assume that the volumes are additive.

> Step 1. Find the excess reactant.

Step 2. Find [H⁺]

 $\frac{0.088 \text{ mol } \text{H}^+ - 0.075 \text{ mol } \text{OH}^-}{0.2500 \text{ L} + 0.1500 \text{ L}} = 0.033M \text{ H}^+$

250.0 mL of 0.35 M HCl is mixed with 150.0 mL of 0.50 M NaOH. Write the

 $0.2500 \text{ L} \times \frac{0.35 \text{ mol H}^+}{1.0 \text{ L}} = 0.088 \text{ mol H}^+$ $0.1500 \text{ L} \times \frac{0.50 \text{ mol OH}^-}{1.0 \text{ L}} = 0.075 \text{ mol OH}^-$

Weak Acid - Strong Base Reactions

- Strong bases completely dissociate.
- Each OH- ion rips an H+ ion off of a weak acid molecule.
- This produces water and the conjugate base of the weak acid.

highest concentrations at equilibrium.

• Equal volumes of 1.0 M HNO₂ and 1.0 M KOH are mixed. Write the net ionic equation for the reaction and identify the aqueous species that have the

Example: Weak Acid - Strong Base Reactions

• 55 mL of 2.5 M NaOH is added to 55 mL of 2.0 M HF. Assuming the volumes are additive, find the pH of the final solution at 25°C.

Step 1: Find the limiting reactant Step 2: Find [OH-] in the final solu

	Step 3:	Find pOH of the final solution
ution	Step 4:	Find pH of the final solution

Henderson - Hasselbalch Equation

- $pK_{a} = -\log_{10}K_{a}$ [A⁻] = molarity of conjugate base [HA] = molarity of weak acid (initial molarity)
- log[Base]• Must be a conjugate acid-base pair[Acid]• A weak base and its conjugate acid

$pH = pK_a + \log \frac{[A]}{[HA]}$ or $pH = pK_a + \log \frac{[Base]}{[Acid]}$

K_a and pK_a - Remember!

 $pK_a = -\log K_a$

and

 $K_a = 10^{-pK_a}$

Example: Weak Acid - Strong Base

at 25°C for CH₃COOH. Find the pH of the final solution.

Step 1: Find the limiting reactant Step 2: Find [CH₃COO⁻] and [CH₃COOH] in the final solution

• 20.0 mL of 1.5 M KOH is added to 50.0 mL of 3.0 M CH₃COOH. $pK_a = 4.8$

KOH is the limiting reactant. When the weak acid is the excess reactant, a buffered solution is created and the pH is calculated using the Henderson-Hasselbalch equation.

Strong Acid - Weak Base Reactions

- Weak Bases will accept protons from a strong acid.
- conjugate base of weak acids.
- have the highest concentrations at equilibrium.

$$\mathrm{NH}_{3(aq)} + \mathrm{H}_{3}\mathrm{O}^{+}_{(aq)} \rightarrow \mathrm{NH}_{4}^{+}_{(aq)} + \mathrm{H}_{2}\mathrm{O}_{(l)}$$

I and NH₄+ will have the highest concentrations at equilibrium.

• Weak Bases may be nitrogen containing compounds such as NH₃ or the

• **Example**: Equal volumes of 2.0 M NH₃ and 2.0 M HI are mixed. Write the net ionic equation for the reaction and identify the aqueous species that

Example: Strong Acid - Weak Base Reactions

final solution at 25°C.

Step 1: Find the limiting reactant Step 2: Find [H₃O⁺] in the final sol

• 125 mL of 2.5 M HCl is added to 115 mL of 2.2 M NH₃. Find the pH of the

t	Step 3:	Find pH of the final solution
ution.		

NH₃ is the limiting reactant. When the strong acid is the excess reactant, the pH can be found from the moles of excess H_3O^+ and the total volume of the final solution.

- absorber of sorts)
- A buffer solution is resistant to changes in pH with the addition of **small** amounts of acid or base.

Buffer Solutions

Something that acts to reduce the impact of one thing on another (a shock

addition of 0.1 cm³ 1.0 mol dm⁻³ HCl pH4

addition of 0.1 cm³ 1.0 mol dm⁻³ NaOH > pH 10

How Buffers Work

- 2 main types:
 - acidic maintain the pH at a value less than 7
 - basic maintain the pH at a value more than 7
- Mixture of 2 solutions
 - each contain a conjugate acid-base pair

Acidic Buffers

- Made by mixing a weak acid with a solution of its salt of a strong alkali • i.e. CH₃COOH_(aq) with NaCH₃COO
- - weak acid salt of weak acid with strong alkali
 - Two equilibria exist in this buffer
 - $CH_3COOH \Leftrightarrow CH_3COO^- + H^+$
 - NaCH₃COO \Leftrightarrow Na⁺ + CH₃COO⁻

Has high concentrations of both acid and base ready to react with either H⁺ or OH⁻

Response to Added Acids & Bases

Adding acid -• $CH_3COO^- + H^+ \Leftrightarrow CH_3COOH$ Adding base • $CH_3COOH + OH \leftrightarrow CH_3COO + H_2O$

- acid
 - i.e. NH₃ with NH₄Cl • $NH_3 + H_2O \Leftrightarrow NH_4^+ + OH^-$
 - $NH_4CI \rightarrow NH_4^+ + CI^-$

Basic Buffers

Made by mixing a weak base with a solution of its salt of a strong

Has high concentrations of both acid and base ready to react with either H⁺ or OH⁻

Response to Added Acids & Bases

Addition of acid

- H⁺ combines with the base NH_3 to form NH_4^+
- Addition of base
 - OH- combines with the acid NH_4^+ to form NH_3 and water, removing most of OH-

- (or weak base whose pK_b is close to the desired pOH).
- one half of it is converted into salt.

	CH ₃ COOH	NaOH	CH ₃ COONa	H_2O
	2	1	0	0
С	-1	-1	1	1
E	1	0	1	1

How to Make a Buffer Solution

• Start with a weak acid whose pK_a is very close to the desired pH of the buffer

• Then, react this acid or base with enough strong alkali or strong acid so that

End up with equal amounts of weak acid and salt

Weak Acid - Weak Base Reactions

- Generally do not go to completion.
- Acids and bases are mostly undissociated.
- We write these as proton transfer reactions.
- Equal volume of 0.2 M aqueous ammonia and 0.2 M acetic acid are mixed.

A two way arrow is used, as a state of equilibrium is established.

 $CH_3COOH_{(aq)} + NH_{3(aq)} \rightleftharpoons CH_3COO_{(aq)} + NH_4^+(aq)$

8.5 Acid-Base Titrations

• Endpoint

• Equivalence Point

Half-Equivalence Point

Acid-Base Titrations

Acid-base titrations are often used to or a base in a solution.

- A strong acid of known concentration (titrant) is added to a base of unknown concentration (analyte), which is mixed with an indicator; or,
- A strong base of known concentration (titrant) is added to an acid of unknown concentration (analyte), which is mixed with an indicator.
 - The indicator changes color to signal the arrival of the Endpoint

Acid-base titrations are often used to determine the concentration of an acid

Acid-Base Titrations

Endpoint

• When the correct indicator is chosen, the endpoint is very close to the Equivalence Point.

• Equivalence Point

the number of moles of analyte that were originally present.

• At the equivalence point, the number of moles of titrant added is equal to

Three Types of Acid-Base Titrations

- 1. Strong acid strong base
- 2. Weak acid strong base
- 3. Weak base strong acid

Н

- (1) Initial pH = 1
- (2) pH changes only gradually until equivalence.
- (3) Very sharp jump in pH at equivalence: from 3 to 11
- (4) After equivalence, the curve flattens out at a high value.
- (5) The pH at equivalence is 7

Strong Acid & Strong Base

Weak Acid & Strong Base

- (1) Initial pH fairly high
- (2) pH stays relatively constant until equivalence - labeled as buffer region
- (3) Jump in pH at equivalence from about pH 7-11, which is not as much of a jump as for a **SA-SB** titration
- (4) After equivalence, the curve flattens out at a high value (SB)

(5) pH at equivalence is > 7

Strong Acid & Weak Base

- (1) Initial pH = 1 (SA)
- (2) pH stays relatively constant through the buffer region to equivalence.
- (3) Jump in pH at equivalence from about 3.0-7.0
- (4) After equivalence, the curve flattens out at a fairly low pH(WB)
- (5) pH at equivalence < 7

Example: Strong Acid - Strong Base Titration

30 mL of 0.50 M HCl was titrated with 0.50 M NaOH. Assume that volumes are additive and the final temperature of all solutions is 25°C.

a) Find the initial pH of 0.5 M HC

b) Find pH after 15 mL of NaOH was a

	c) Find pH after 30 mL of NaOH was added.
added.	d) Find the pH after 45 mL of NaOH was added.

The net ionic equation $H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(l)}$

Example: Weak Acid - Strong Base Titration

30 mL of 0.50 M CH₃COOH was titrated with 0.50 M NaOH.

a) Determine the volume of 0.50 M NaOH that must be delivered to reach the half equivalence point.

b) The pH at the half equivalence point is measured to be 4.74. Find pK_a for CH₃COOH.

c) Identify the main species that are present in the solution being titrated at the half equivalence point.

Titration Curves for Polyprotic Acids

14

12

10

8

6

4

2

0

The following can be determined:

- the number of acidic protons
- the pK_a value for each ^{pH} acidic proton of a weak polyprotic acid
- The major species present at any point along the curve.

Volume of 0.5 *M* NaOH added (mL)

- Buffered Solutions
- Acid-Base Indicators

8.7 pH and pK_a 8.8 Properties of Buffers 8.9 Henderson-Hasselbalch Equation 8.10 Buffer Capacity

The Common Ion Effect is Used to Create Buffer Solutions

Buffers resist changes in pH

• When small quantities of strong acids or strong bases are added to a buffered solution, the changes in pH are small.

Buffer

- A weak acid and its salt (extra conjugate base)
- or... a weak base with its salt (extra conjugate acid)

Buffering Capacity

- without significant change in pH
- Higher concentrations of HA and A- in the solution result in greater buffering capacities.

$$pH = pK_a + \log\frac{[A^-]}{[HA]}$$

This is helpful when choosing a conjugate acid-base pair. If a buffer needs to have a certain pH, one would choose a weak acid with a pK_a value that is very close to the desired pH.

Buffer Capacity

The ability of a buffered solution to accept protons or hydroxide ions

When
$$\frac{[A^-]}{[HA]} = 1$$
, $\log \frac{[A^-]}{[HA]} = 0$ and pH =

How Acid-Base Indicators Work

- In a titration, there is a large shift in pH as the equivalence point is passed.
 This large shift in pH causes the indicator's equilibrium to shift and its color to
- This large shift in pH causes the ind change.
- The color starts to change when [HIn] ≅ [In-]
- The color change experienced by different indicators occurs over different pH ranges.
 - You must select an indicator that changes color at a pH that is as close to possible to the pH at the equivalence point.

How Acid-Base Indicators Work

Colorless pH<8.3

OH⁻

 H^+

Benzoid form of Phenolphthalein (acidic conditions)

 $HIn_{(aq)} \rightleftharpoons H^+_{(aq)} + In^-_{(aq)}$ one color $H^+_{(aq)} + In^-_{(aq)}$ another color

Pink colored pH>10.5

Quinonoid form of Phenolphthalein (basic conditions)

How Acid-Base Indicators Work

When $[HIn] = [In^-]...$ $pH = pK_a + \log \frac{\lfloor In^- \rfloor}{[HIn]}$

- $pH = pK_{a}$

Choose the indicator that has:

 $HIn_{(aq)} \rightleftharpoons H^+_{(aq)} + In^-_{(aq)}$ one color $H^+_{(aq)} + In^-_{(aq)}$ another color

 $pK_{a(indicator)} = pH_{(equivalence point)}$

Indicator

Methyl Orange Methyl Red Bromcresol Purple Bromthymol Blue Phenolphthalein Alizarin Yellow

Choosing an Indicator

3.7 5.1 6.3 7.0 9.4 11.0

Example: Choosing an Indicator

Which indicator would you use when titrating HCl with NaOH? (Equivalence point occurs when pH = 7.0)

Indicator	p <i>K</i> _a
Methyl Orange	3.7
Methyl Red	5.1
Bromcresol Purple	6.3
Bromthymol Blue	7.0
Phenolphthalein	9.4
Alizarin Yellow	11.0

